JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Introduction of Absorption Chiller to Chemical Factory

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to contribute to Indonesia's sustainable development through improvement in energy efficiency and reduction in greenhouse gases (GHG) by introducing a steam-driven absorption chiller at an existing chemical factory in Indonesia. The newly installed absorption chiller which replaces with the existing chiller, will generate the chilled water using waste steam, and by doing so, the factory's electricity consumption is significantly reduced as compared with using the existing or reference one.

The project is located at the factory of PT Timuraya Tunggal in Karawang Regency, West Java Province (Figure 1 below shows the project location). Under the proposed project, the absorption chiller produces chilled water from waste steam within the factory and reduces power consumption of the chiller.

A.3. Location of project, including coordinates

Country	The Republic of Indonesia	
Region/State/Province etc.:	Karawang Regency, West Java Province	
City/Town/Community etc:	Jalan Anggadita Raya No. 205, Desa Anggadita, Klari	

	Sub-District, Karawang Regency 41371	
Latitude, longitude	Latitude: S 6°21'10"	
	Longitude: E 107°19'59"	

A.4. Name of project participants

The Republic of Indonesia	PT. Timuraya Tunggal	
Japan	Tokyo Century Corporation	

A.5. Duration

Starting date of project operation	05/03/2019
Expected operational lifetime of project	8 years

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the financing programme for JCM model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits. Further, implementation of the proposed project promotes diffusion of low carbon technology within Indonesia.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	JCM-ID-AM022	
Version number	Ver.01.0	

B.2. Explanation of how	the project mee	ets eligibility criteria	a of the approved me	thodology
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Eligibility	Descriptions specified in the	Project information
criteria	methodology	
Criterion 1	Project chiller is an absorption chiller	The proposed project installs a new
	with a capacity which is less than or	steam absorption chiller from
	equals to 1,300 USRt.	Kawasaki Thermal Engineering Co.,
	* 1 USRt = 3.52 kW	Ltd. (KTE) Type NES-630 with a
		capacity of 630 USRt
Criterion 2	Periodical check is planned more than	The Indonesian project owner plans to
	four (4) times annually.	conduct periodical check more than
		four (4) times a year.
Criterion 3	In the case of replacing the existing	Project chiller uses water as
	chiller with the project chiller, a plan for	refrigerant. As for the existing

	prevention of releasing refrigerant used	chillers, the Indonesian project owner
	in the existing chiller to the air (e.g. re-	prepared a plan for prevention of
	use of the equipment) is prepared.	refrigerant release to the air from the
	Execution of this plan is checked at the	existing chiller, which has been
	time of verification, in order to confirm	shared with the Japanese project
	that refrigerant used for the existing one	participant.
	replaced by the project is prevented from	
	being released to the air.	
	In the case that the existing chiller is	
	NOT replaced with the project chiller,	
	this criterion is not applied.	
Criterion 4	In the case that project absorption chiller	The project absorption chiller is not
	uses fossil fuel for its heat source, such	expected to use fossil fuel for its heat
	fossil fuel is gas fuel.	source.

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions		
Emission sources GHG type		
Power Consumption by reference chiller	CO ₂	
Project emissions		
Emission sources	GHG type	
Power Consumption by project chiller	CO ₂	

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

Note: Electricity consumption by the project absorption chiller $(EC_{PJ,I,p})$ is calculated based on Method II stipulated in MPS, where the value is calculated by the catalogue value of the electric power of the absorption chiller multiplying by operation hours of the project chiller (Monitoring Point (4)).

Year	Estimated Reference emissions (tCO ₂ e)	Estimated Project Emissions (tCO ₂ e)	Estimated Emission Reductions (tCO ₂ e)
2019	390.6	23.8	366
2020	636.7	28.6	608
2021	710.9	28.6	682

C.3. Estimated emissions reductions in each year

2022	740.7	28.6	712
2023	740.7	28.6	712
2024	740.7	28.6	712
2025	740.7	28.6	712
2026	740.7	28.6	712
2027	123.5	4.8	118
Total (tCO ₂ e)			5,334

Note: The estimated emission reductions in each year are rounded down after the decimal point.

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for	No	
the proposed project		

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

As part of JCM process, the project participants held a local stakeholder consultation meeting in order to take due steps to engage stakeholders and solicit comments for the proposed project. Details of the local stakeholders consultation meeting is summarized as follows:

Date and Time: Wednesday, 14 November 2018, 09.00 – 13.00 (Western Indonesian Time) Venue: Swiss-Belinn Karawang (Hotel)

Address: Jl. Jendral Ahmad Yani no 29, Tanjungpura, Karawang Barat, Kabupaten Karawang, Jawa Barat 41315, INDONESIA

The following public and private entities have been identified as stakeholders, and they were invited either through letter or e-mail followed up by telephone calls:

- Indonesia JCM Secretariat
- Coordinating Ministry of Economic Affairs (CMEA)
- Indonesia Joint Committee Members
- Environmental and Sanitation Agency (DLHK), Karawang Regency
- Industrial and Trade Agency (Disperindag), Karawang Regency
- Environmental Agency (DLH), West Java Province
- Cooperation Division, Governance and Cooperation Bureau, West Java Province
- Production and Industry Bureau, West Java Province
- Energy and Mineral Resources Agency (DESDM), West Java Province
- Industry and Trade Agency (Disperindag), West Java Province
- American Society of Heating, Refrigerating, and Air-Conditioning Engineers

(ASHRAE), Indonesia Chapter

- Indonesia Inorganic Basic Chemicals Association (AKIDA)
- PT Century Tokyo Leasing Indonesia
- PT Gikoko Kogyo Indonesia
- Nippon Koei Co., Ltd.
- Takasago Thermal Engineering Co., Ltd.
- Azbil Corporation
- CIMB Niaga
- Mitsubishi Corporation
- PT Monokem Surya
- PT DIC Graphic
- PT Pupuk Kujang
- Other companies
- Jakarta Globe
- NNA Japan Co., Ltd.

Meeting Agenda:

- Opening remarks and Introduction by project participants
- Opening speech by Coordinating Ministry of Economic Affairs
- Progress of JCM in Indonesia by Indonesia JCM Secretariat
- Project Outline by Tokyo Century Corporation
- Project Technology by PT Gikoko Kogyo Indonesia
- MRV (Monitoring, Reporting, and Verification) of the project by Mitsubishi UFJ Morgan Stanley Securities, Co., Ltd. (MUMSS)
- Company Profile and Project Outline by PT Timuraya Tunggal
- Question and Answer Session
- Closing Remarks by PT Century Tokyo Leasing Indonesia

Meeting Summary:

There was a total of 54 stakeholders attended the meeting. No negative comments were expressed toward the proposed project by the attendees during the meeting. For those who were invited and yet were unable to attend the meeting, the project participants sent them the presentation materials used at the meeting and requested them to provide their comments, if any. No additional comments were received from the absentees. The comments relevant to the project received during the local stakeholders meeting, along with the responses/action to the comments, are listed in the following section.

Stakeholders	Comments received	Consideration of comments received	
PT DIC Graphic	For a factory that does not have availability of waste steam, will it be beneficial to use absorption chiller if the	There is a certain balance point where steam absorption chiller can be beneficial which needs to be analyzed through comprehensive feasibility study, as it depends on the	
	steam is intentionally produced?	situation of each factory/facility. (No further action is needed)	
KIIC Industrial Estate	With the installation of steam absorption chiller, will the PLN supply capacity also decrease?	Currently the project owner is experiencing a shortage of electricity, so the introduction of absorption chiller is good to have more available electricity capacity as there is also another plan to add more equipment. (No further action is needed)	
Pupuk Kujang Cikampek (PKC)	Is there any limitation for amount of investment to be eligible for JCM implementation?	There is no limitation of the amount of investment to be eligible for JCM. Only thing is that the project which can generate higher emission reduction amount compared to its investment is more desirable. (No further action is needed)	
	What is the benefit that Timuraya gives back to Japanese government in JCM scheme?	The purpose of JCM is to disseminate the information on the project which reduces emission, and it is hoped that this project can be replicated by others. (No further action is needed)	
	How to determine the baseline for JCM project?	In JCM, the baseline used to determine emission reduction is called Reference Emission, which is set below business-as- usual (BAU) to be conservative. The calculation is elaborated in the methodology for the project. (No further action is needed).	
	What is the temperature and pressure of steam which can be utilized for absorption chiller in this project?	Steam in Timuraya has pressure of 5 bar under old piping. Steam pressure from boiler is 7 bar (saturated, not superheated). With improvement in piping, it is observed that the loss is only 0.5 bar, thus steam arriving at the chiller has pressure of approximately 6.5 bar with new piping. The absorption chiller capacity selected for this project is 630 USRt with optimal operating pressure of 8 bar. Therefore, with lower steam pressure of	

E.2. Summary of comments relevant to the project and their consideration

		approximately 6.5 bar supplied, the effective
		cooling capacity is about 500 USRt.
		(No further action is needed)
	Is steam cheaper than	Steam from gas costs higher than electricity
	electricity in this project, as in	to produce the same cooling capacity. For
	the case of Pupuk Kujang	this project, savings can be realized as there
	factory, steam is generated	is excess waste steam from the existing boiler
	from gas, in which the costs	that can be used to feed into the steam
	are more expensive than	absorption chiller.
	electricity?	(No further action is needed)
PT Pupuk	Where can the public access	All the methodology can be accessed in
Kujang	all existing JCM	Indonesia JCM website at
	methodology?	https://www.jcm.go.jp/id-jp.
		(No further action is needed)
	Is it still feasible to utilize	For steam of 3.5 bar, the utilization is already
	absorption chiller if the	very limited. The lower limit for the steam
	available steam is 3.5 bar?	utilization is about 4 bar, and lower than that,
		the efficiency will become very low.
		(No further action is needed)
	Why the calculation of	The calculation is designed as in draft
	emission reduction is indirect	methodology because the reference needs to
	in the draft methodology, as it	use the type of chiller which is better than
	looks very complicated?	baseline. As such, indirect method is used to
	looks very complicated?	ensure that the calculation is conservative
		and precise.
	What are the approximation if	(No further action is needed)
	What are the consequences if	The equipment under the JCM model
	the equipment is not	projects must be used continuously
	continuously used throughout	throughout the operational lifetime (8 years
	the crediting period?	for Timuraya). If not, the project participants
		will be responsible to return an appropriate
		amount of the financial support they received
		back to Japanese government.
		(No further action is needed)

F. References

N/A

Reference lists to support descriptions in the PDD, if any.

Annex

1 1/11		
1 1/11		

Revision history of PDD				
Version	Date	Contents revised		
01.0	09/01/2020	First Edition		
01.1	18/02/2020	Second Edition		
	<u>30/03/2020</u>	Initial registration by the Joint Committee through electronic		
		decision		