JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Introduction of 0.95 MW Rooftop Solar Power System in Cigarette Lighter Factory

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to reduce CO₂ emissions by introducing a grid-connected solar photovoltaic (PV) system on top of the Factory Building of Thai Merry Co., Ltd.. The total solar module output is 950.6 kW and overall system output is 733 kW. The solar PV system replaces the grid electricity mostly derived from natural gas. All of the power generated by the solar PV system is self-consumed and not fed into the grid. Installed modules are Toshiba 72 cell polycrystalline PV module. This module achieves high performance even in the high-temperature and high-humidity climate in this project site. PV generated energy is monitored at a remote location.

A.3. Location of project, including coordinates

Country	Kingdom of Thailand	
Region/State/Province etc.:	Samut Sakorn Province	
City/Town/Community etc:	97 M 11 Petchkasem Rd., Omnoi, Kratuban	
Latitude, longitude	13°42'1.21"N 100°18'11.49"E	

A.4. Name of project participants

The Kingdom of Thailand	Thai Merry Co., Ltd.
Japan	Finetech Co., Ltd.

A.5. Duration

Starting date of project operation	01/03/2019
Expected operational lifetime of project	17 years

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the Financing Programme for JCM Model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits. As for technology transfer, capacity building on operation and monitoring has been provided by Finetech Co., Ltd. through its office in Thailand.

B. Application of an approved methodology(ies)		
B.1. Selection of methodology(ies)		
Selected approved methodology No. TH_AM001		
Version number Ver01.0		

Eligibility	Descriptions specified in the	Project information
criteria	methodology	
Criterion 1	The project installs solar PV	A solar PV system is installed at the site.
	system(s).	The solar PV module employed is
		Toshiba polycrystalline photovoltaic
		module TA72P320WB/K.
Criterion 2	The solar PV system is connected	The solar PV system is
	to the internal power grid of the	connected to the internal power grid of
	project site and/or to the grid for	the site and to the grid.
	displacing grid electricity and/or	
	captive electricity at the project	
	site.	
Criterion 3	The PV modules have obtained a	The installed PV module (Toshiba
	certification of design	polycrystalline photovoltaic module
	qualifications	TA72P320WB/K) has obtained a
	(IEC 61215, IEC 61646 or IEC	certification of design qualifications
	62108) and safety qualification	(IEC 61215) and safety qualification
	(IEC 61730-1 and IEC 61730-2).	(IEC 61730-1 and IEC 61730-2).
Criterion 4	The equipment to monitor output	Data loggers of inverters are installed to
	power of the solar PV system and	measure and record the output power of
	irradiance is installed at the project	the solar PV system. A pyranometer is
	site.	installed at the site to measure
		irradiance.

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

C. Calculation of emission reductions		
C.1. All emission sources and their associated greenhouse gases relevant to the JCM project		
Reference emissions		

Emission sources	GHG type	
Consumption of grid electricity	CO_2	
Project emissions		
Emission sources	GHG type	
Generation of electricity from solar PV system(s)	N/A	

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

C.3.	Estimated	emissions	reductions	in each	vear

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	-	-	-
2018	-	-	-
2019	333.9	0	333
2020	400.9	0	400
2021	400.9	0	400
2022	400.9	0	400
2023	400.9	0	400
2024	400.9	0	400

2025	400.9	0	400
2026	400.9	0	400
2027	400.9	0	400
2028	400.9	0	400
2029	400.9	0	400
2030	400.9	0	400
Total (tCO ₂ e)		4,733	

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for	No	
the proposed project		

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

Local stakeholder consultation (LSC) meeting was held at 14:00-16:00, 30 November 2018 at the meeting room of Thai Merry Co., Ltd. (TM). Participants from the government (Thailand Greenhouse Gas Management Organization), Managing Director, supervisor, and operators of TM, EPC contractor, and focal point (Finetech Co., Ltd.) were invited to LSC. Comments were collected from participants. The minutes of meeting was distributed and reviewed among the participants.

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received
TGO	TGO requested to waste PV panel	In future when PV panel disposal is
	properly according to a regulation	necessary, TM will dispose PV panel
	when it needs disposal.	according to existing regulation at that
		time.
Managing	The factory consumes 3-4 MWh/day	No action is needed.
Director of TM	of electricity and has wished to install	
	PV system for long time. They	
	thanked JCM scheme to make it	
	realized.	

Supervisor of	The Supervisor inquired if the PV	It was explained that PV panel	
ТМ	generation plan considers degradation	degradation by aging is considered in	
	of PV panel due to aging.	the generated energy calculation.	
Operator	No comment was given.	No action is needed.	
EPC contractor	Generally, inverter needs to be	Proper maintenance including	
	replaced in about 10 years, while PV	inverter replacement should be taken.	
	panel will last 25 years.		

F. References N/A

Reference lists to support descriptions in the PDD, if any.

Annex

Revision history of PDD			
Version	Date	Contents revised	
01.0	20/02/2019	First edition	