JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Energy Saving for Air conditioning in Tire Manufacturing Factory with High Efficiency Centrifugal Chiller

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to improve energy saving for air conditioning and process cooling by introducing high efficiency centrifugal chillers in a tire factory. The factory needs considerable electricity, and chillers consume significant amount of energy compared with the other machines in the factory. The proposed project locates in Bridgestone Tire Manufacturing (THAILAND) Co., Ltd. in Chonburi province in Thailand. Before the project was implemented, there were three (3) chillers, one absorption chiller and two centrifugal chillers. These chillers were replaced with three (3) high efficiency centrifugal chillers of 600 USRt by the project.

A.3. Location of project, including coordinates

Country	The Kingdom of Thailand	
Region/State/Province etc.:	Chonburi province	
City/Town/Community etc:	Amata Nakorn Industrial Estate	
	Tambol Bankao Amphur Panthong	
Latitude, longitude	N 13° 26' 52.4" and E 101° 03' 11.4"	

A.4. Name of project participants

The Kingdom of Thailand	Bridgestone Tire Manufacturing (THAILAND) Co., Ltd. (hereinafter "Bridgestone")
Japan	INABATA & CO., LTD.

A.5. Duration

Starting date of project operation	01/02/2018	
Expected operational lifetime of project	9 years	

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the Financing Programme for JCM Model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits. As for technology transfer, capacity building on operation and monitoring activities has been conducted by Ebara (Thailand) Limited below:

- 1) Direct instruction on proper operation, and
- 2) The opportunity for local operators to visit buildings in Japan where district heating and cooling system are being operated and to learn actual status of chiller utilization.

B. Application of	an approved	methodology(ies)
	·····	

B.1. Selection of methodology(ies)

Selected approved methodology No.	TH_AM005	
Version number	Version 02.0	

Eligibility	Descriptions specified in the methodology				Project information
criteria					
Criterion 1	Project chiller chiller with a c to 1,500 USRt. Note : 1 USRt =	capacity v	Project chiller (Ebara high efficiency centrifugal chiller: RTBF 060S) is a centrifugal chiller with non- inverter type which is a capacity of 600 USRt. [Calculation]		
					2,110 [kW] / 3.52 = 599.43 \Rightarrow 600 [USRt]
Criterion 2	COP for proj standardizing t is more than t table below. (capacity per ur	temperati he thresh "x" in th	The COPs for project chillers (COP _{PJ,tc,i}) which are introduced to the proposed project are described below.		
	Cooling capacity per unit [USRt]300	0≤x<500	500≤x<800	800≤x≤1500	COP of No.1 chiller is 6.31 COP of No.2 chiller is 6.36 COP of No.3 chiller is 6.36
	Threshold COP 5.6	57	5.81	6.05	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

	value		
	COP _{PJ,tc,i} is calculated by altering t	he temperature	
	conditions of COP of project chi	ler i (COP _{PJ,i})	
	from the project specific cond	itions to the	
	standardizing conditions. COP _{PJ,i} i	s derived from	
	specifications prepared for the quot	ation or factory	
	acceptance test data by manufacture	r.	
	[equation to calculate $COP_{PJ,tc,i}$]		
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling})]$		
	- T _{chilled-out,i}		
	$+ TD_{cooling}) \div$	(37 – 7	
	$+ TD_{chilled} + T$	'D _{cooling})]	
	COP _{PJ,tc,i} : COP of project chi under the standardizing temperature cond		
	COP _{PJ,i} : COP of project chi		
	project specific conditi T _{cooling-out,i} : Output cooling w		
	of project chiller <i>i</i> set under the	-	
	conditions [degree Celsius] T _{chilled-out,i} : Output chilled w of project chiller <i>i</i> set under the conditions [degree Celsius]		
	TD _{cooling} : Temperature difference betw temperature of refrigerant and water temperature 1.5 degree default value [degree Celsius]		
	TD _{chilled} : Temperature difference betw temperature of refrigerant and water temperature, 1.5 degree default value [degree Celsius]	output chilled	
	*1 : The standardizing temperature calculate COP _{PJ,tc,i} Chilled water: output 7 degr	e conditions to ees Celsius	
	Cooling water: output 37 degr	ees Celsius ees Celsius ees Celsius	
Criterion 3	Periodical check is planned at least	t one (1) time	Bridgestone agreed to
	annually.		conduct periodical checks
			more than one (1) time
			annually, in order to check
			the troubles occurred from
			the last check.

Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant	Refrigerant for the project
	used for project chiller is zero.	chiller is HFC 245fa, whose
		ODP is zero.
Criterion 5	A plan for prevention of releasing refrigerant used	"Refrigerant recovery and
	for project chiller is prepared. In the case of	charging procedure plan"
	replacing the existing chiller with the project	was prepared by the chiller
	chiller, a plan for prevention of releasing	manufacturer and signed by
	refrigerant used in the existing chiller to the air (e.g.	the project participants
	re-use of the equipment) is prepared. Execution of	properly.
	this plan is checked at the time of verification, in	Also, the existing chiller
	order to confirm that refrigerant used for the	was replaced by the project
	existing one replaced by the project is prevented	chiller and its refrigerant
	from being released to the air.	was removed and re-used
		properly by the chiller
		manufacturer (Ebara
		Thailand).

C. Calculation of emission reductions

C.1. All emission sources and their associated	greenhouse gases relevant to the JCM project

Reference emissions			
Emission sources GHG type			
Power consumption by reference chiller	CO ₂		
Project emissions			
Emission sources	GHG type		
Power consumption by project chiller	CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

Year	Estimated	Reference	Estimated	Project	Estimated	Emission
	emissions (tC	O ₂ e)	Emissions (tCO	0 ₂ e)	Reductions (tCO ₂ e)	
2018		2,264.3		2,073.2		191
2019		2,470.1		2,261.7		208
2020		2,470.1		2,261.7		208
2021		2,470.1		2,261.7		208
2022		2,470.1		2,261.7		208
2023		2,470.1		2,261.7		208
2024		2,470.1		2,261.7		208
2025		2,197.2		2,010.4		186
2026		1,169.8		1,068.0		101
2027		68.8		62.8		5
Total (tC	O ₂ e)					1,731

C.3. Estimated emissions reductions in each year

D. Environmental impact assessment			
Legal requirement of environmental impact assessment for	NO		
the proposed project			

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

Local Stakeholder Consultation (LSC) had been held in 28th November 2017, which had invited several stakeholders (see the list of participants below). As for the invitation to Thailand government organization, the invitation letter sent to TGO on 23th November 2017. Details of the LSC are presented below;

Date : Nov. 28, 2017 10:00 -

Venue : Meeting room of Bridgestone Tire Manufacturing (THAILAND) Co., Ltd.

Agenda :

#	Time	Program	Remarks
1	10:00 - 10:10	Opening remarks	TGO and BTMT or Inabata
2	10:10 - 10:20	Overview of the project	Inabata
3	10:20 - 10:30	Explanation of technology	Ebara Thailand
		introduced at the BTMT factory	
4	10:30 - 10:50	Questions and answers	All
5	10:50 - 11:00	Closing remarks	TGO and BTMT or Inabata

List of the participants:

#	Organization	
1	Bridgestone Tire Manufacturing (Thailand) Co., Ltd. (BTMT)	
	(Managing Director, Administration Director, Plant Manager, Department	
	Manager of Engineering Dept., Manager of Accounting & Finance Dept,	
	Interpreter etc.)	
2	Thailand Greenhouse Gas Management Organization (TGO)	
3	Inabata & Co., Ltd.	
4	Ebara (Thailand) Limited	
5	Nippon Koei Co., Ltd.	

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments	
		received	
Thailand	Please let us know the installation	1) As for the installation place,	
Greenhouse Gas	place of chillers. Also, is there any	the chillers were installed	
Management	possibility of releasing the	inside the factory building.	
Organization	refrigerant from the project chiller?	[Bridgestone]	
(TGO)		2) As for the refrigerant, it will not be released to the air. [Bridgestone]The comments were closed.	
Thailand How does it calculate/estimate the		At the factory inspection, COP was	

Greenhouse Gas		coefficient of performance (COP)	checked based on the Japanese	
Management		of the project chiller?	Industrial Standards (JIS) code	
Organization			properly and reported in the	
(TGO)			inspection sheet. [Ebara Thailand	
			Limited]	
			The comment was closed.	
Staff	of	Through the JCM model project,	Positive opinion was received.	
Bridgestone		electricity consumption has been	No action is needed.	
		reduced. And, confirmation of the		
		energy saving can be identified		
		easily with the monitoring system		
		installed.		

F. References

Reference lists to support descriptions in the PDD, if any.

Annex

Revision history of PDD					
Version	Date	Contents revised			
01.0	28/02/2019	First edition			
02.0	10/07/2020	Second edition			
	<u>17/06/2022</u>	Initial registration by the Joint Committee through electronic			
		decision			