JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Installation of Energy Saving Equipment in Lens Factory

A.2. General description of project and applied technologies and/or measures

Energy saving equipment, namely inverter type centrifugal chiller and heat recovery electric heat pump (hereinafter referred to as HREHP), are installed at the lens factory of HOYA LENS VIETNAM LTD (hereinafter referred to as HOLV) located in Thu Dau Mot City, Binh Duong Province, Viet Nam.

Installation of centrifugal chiller improves energy efficiency of chiller, which leads to GHG emission reductions. One centrifugal chiller manufactured by Mitsubishi Heavy Industries (product model type "ETI-50") is installed for this project.

Installation of HREHP leads to reduction of energy consumption by electric heater for heating energy generation and air-cooled chiller for cooling energy generation, which leads to GHG emission reductions. One HREHP manufactured by Toshiba Carrier Corporation (product model type "HWC-WH6702V") is installed for this project.

Outline of centrifugal chiller installed

A.3. Location of project, including coordinates

Country	The Socialist Republic of Viet Nam
Region/State/Province etc.:	Binh Duong Province
City/Town/Community etc:	20 VSIP 2 Street 4, Viet Nam Singapore Industrial Park 2, Hoa Phu Ward, Thu Dau Mot City
Latitude, longitude	11°04'55.7"N 106°40'56.6"E

A.4. Name of project participants

The Socialist Republic of Viet Nam	HOYA LENS VIETNAM LTD
Japan	HOYA CORPORATION

A.5. Duration

Starting date of project operation	Centrifugal chiller: 28/05/2018 HREHP: 01/12/2017		
Expected operational lifetime of project	9 years for centrifugal chiller9 years for HREHP		

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the Financing Programme for JCM Model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	VN_AM011	
Version number	Ver1.0	
Selected approved methodology No.	VN_AM012	
Version number	Ver1.0	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

For VN_AM011

Eligibility criteria	Descriptions specified in the methodology	Project information	
Criterion 1	Project chiller is an inverter type centrifugal chiller with a capacity which is less than or equals to 1,500 USRt. *1 USRt = 12,000 BTU/hr = 3.52 kW	An inverter type centrifugal chiller manufactured by Mitsubishi Heavy Industries (product model type "ETI-50"), whose cooling capacity is 460 USRt, is installed for this	
Criterion 2	COP for project chiller i calculated under the standardizing temperature conditions* (COP _{PJ,tc,i}) is more than the threshold COP values set in the tables below. ("x" in the table represents cooling capacity per unit.) $Coolingcapacityper unit(USRt)300 \le x < 450450 \le x < 550550 \le x < 825825 \le x \le 1,500$	roject. COP for the project chillers (ETI-50) calculated under the standardizing temperature conditions is 6.22 with a cooling capacity of 460 USRt, which is more than the	
	COP 5.59 5.69 5.85 6.06 value	threshold COP value	

	COD is calculated by alterial that is	
	$COP_{PJ,tc,i}$ is calculated by altering the temperature	set in this criterion.
	conditions of COP of project chiller i (COP _{PJ,i}) from the	
	project specific conditions to the standardizing	
	conditions. COP _{PJ,i} is derived from specifications	
	prepared for the quotation or factory acceptance test	
	data by manufacturer.	
	[equation to calculate COP _{PJ,tc,i}]	
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled})]$	
	+ $TD_{cooling}$) ÷ (37 - 7 + $TD_{chilled}$	
	+ TD _{cooling})]	
	$\text{COP}_{\text{PJ,tc,i}}$: COP of project chiller <i>i</i> calculated under the	
	standardizing temperature conditions* [-]	
	$\text{COP}_{\text{PJ},i}$: COP of project chiller <i>i</i> under the project specific	
	conditions [-]	
	T _{cooling-out,i} : Output cooling water temperature of project chiller	
	<i>i</i> set under the project specific conditions [degree Celsius]	
	T _{chilled-out,i} : Output chilled water temperature of project chiller	
	<i>i</i> set under the project specific conditions [degree Celsius]	
	TD _{cooling} : Temperature difference between condensing	
	temperature of refrigerant and output cooling water	
	temperature, 1.5 degree Celsius set as a default value	
	[degree Celsius]	
	TD _{chilled} : Temperature difference between evaporating	
	temperature of refrigerant and output chilled water	
	temperature, 1.5 degree Celsius set as a default value	
	[degree Celsius]	
	*The standardizing temperature conditions to calculate	
	COP _{PJ,tc,i} Chilled water: output 7 degrees Celsius	
	input 12 degrees Celsius	
	Cooling water: output 37 degrees Celsius input 32 degrees Celsius	
Criterion 3	Periodical check is planned more than one (1) time	A contract of annual
	annually.	maintenance is signed
		between the project
		participant and an
		* * ·····

		agent who is authorized
		by the chiller
		manufacturer,
		Mitsubishi Heavy
		5
		Industries.
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant	The refrigerant used for
	used for project chiller is zero.	project chiller is R134a
~		whose ODP is zero.
Criterion 5	A plan for prevention of releasing refrigerant used for	An existing chiller is
	project chiller is prepared. In the case of replacing the	replaced by the project
	existing chiller with the project chiller, a plan for	chiller for this project.
	prevention of releasing refrigerant used in the existing	Measures to prevent
	chiller to the air (e.g. re-use of the equipment) is	releasing refrigerant
	prepared. Execution of this plan is checked at the time	used in the existing
	of verification, in order to confirm that refrigerant used	chiller to the air were
	for the existing one replaced by the project is	taken when it was
	prevented from being released to the air.	replaced. The replaced
		chiller is stored at the
		project site and
		monitored the storage
		status of refrigerant
		with a pressure gauge
		to make sure
		refrigerant is not
		released to the air. A
		"WORK
		INTRUCTION FOR
		MONTHLY
		CHECKING THE
		GAS PRESSURE OF
		AIR CHILLER NO.2"
		is prepared to monitor
		and record the status of
		refrigerant in order to
		avoid releasing
		refrigerant to the air.

	As for the project
	chiller, airtightness is
	quite high and all
	piping and valves are
	closed, therefore
	releasing refrigerant to
	the air is not expected.

For VN_AM012

Eligibility	Descriptions specified in the methodology	Project information		
criteria				
Criterion 1	A project introduces (an) heat recovery	HREHP manufactured by		
	electric heat pump(s) (HREHP). In case (an)	Toshiba Carrier Corporation		
	project HREHP(s) replaces existing	(product model type "HWC-		
	equipment, the existing one is not (an)	WH6702V") is newly installed		
	HREHP(s).	for this project.		
Criterion 2	Periodical check is planned more than one (1)	A contract of annual		
	time annually.	maintenance is signed between		
		the project participant and an		
		agent who is authorized by the		
		HREHP manufacturer, Toshiba		
		Carrier Corporation.		
Criterion 3	Ozone Depletion Potential (ODP) of the	The refrigerant used for project		
	refrigerant used for project HREHP(s) is zero.	HREHP is R134a whose ODP		
		is zero.		
Criterion 4	A plan for prevention of releasing refrigerant	Airtightness of the project		
	used for project HREHP(s) is prepared. In the	HREHP is quite high, and all		
	case of replacing the existing chiller with the	piping and valves are closed,		
	project HREHP(s), a plan for prevention of	therefore releasing refrigerant		
	releasing refrigerant used in the existing chiller	to the air is not expected.		
	to the air (e.g. re-use of the equipment) is	There is no existing chiller		
	prepared. Execution of this plan is checked at	replaced with the project		
	the time of verification, in order to confirm that	implementation.		
	refrigerant used for the existing one replaced			
	by the project is prevented from being released			
	to the air.			

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project For VN_AM011

Reference emissions			
Emission sources	GHG type		
Power consumption by reference chiller	CO ₂		
Project emissions			
Emission sources	GHG type		
Power consumption by project chiller	CO ₂		

For VN_AM012

Reference emissions			
Emission sources	GHG type		
Power consumption by reference electric heater and air-cooled chiller	CO ₂		
Project emissions			
Emission sources	GHG type		
Power consumption by project HREHP(s)	CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

Monitored data are kept and archived for two years after the final issuance of credits.

Year	Estimated Refe	rence	Estimated	Project	Estimated	Emission
	emissions (tCO _{2e})		Emissions (tCO _{2e})		Reductions (tCO _{2e})	
2013		-		-		-
2014		-		-		-
2015		-		-		-
2016		-		-		-
2017		N/A		N/A		93
2018		N/A		N/A		1,176
2019		N/A		N/A		1,220
2020		N/A		N/A		1,220
Total		NI/A		NI/A		2 700
(tCO _{2e})		N/A		N/A		3,709

C.3. Estimated emissions reductions in each year

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for	No	
the proposed project		

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

In order to collect comments from stakeholders, a local stakeholder consultation has been conducted on 7 July 2018 at the plant of HOYA LENS VIETNAM LTD where the project was implemented in Binh Duong Province, Vietnam. The schedule and participants of the meetings are provided below.

Date: 7 July 2018

Venue: Factory of HOYA LENS VIETNAM LTD, 20 VSIP 2 Street 4, Viet Nam Singapore Industrial Park 2, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province

Agenda:

1. Opening remarks

2. Introduction about HOLV

3. Project Overview and introduced Technology and Facility

4. Q&A and comments to receive from the participants:

[Local stakeholders]

No.	Organization	Position
1	HOYA LENS VIETNAM LTD	HR Manager
2	HOYA LENS VIETNAM LTD	Facility Manager
3	HOYA LENS VIETNAM LTD	Facility Staff

[Project participants]

Project participants:

HOYA LENS VIETNAM LTD

HOYA CORPORATION

After explanation about the proposed JCM project, questions and comments were solicited from the stakeholders. A summary of the comments received and consideration of those comments are provided in Section E.2. below.

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received		
Facility Staff	What would be a consequence if	The estimated emission reductions are		
	estimated emission reductions will	just for estimation, and they vary		
	not be achieved by the project?	depending on production volume.		
		Therefore, there will be no penalty if		
		they will not be achieved by the		
		project.		
		No action is needed.		
HR Manager	If there is any other programme by	We don't know any other programme		
	Vietnamese government to support	by Vietnamese government to support		
	activities which leads to GHG	such activities.		
	emission reductions, please let us			
	know.	No action is needed.		

Reference lists to support descriptions in the PDD, if any.

Annex				
Estimated emissions reductions in each year				
[For centrifugal chiller]				
Year	Estimated Reference	Estimated Project	Estimated Emission	
	emissions (tCO _{2e})	Emissions (tCO _{2e})	Reductions (tCO _{2e})	
2013	-	-	-	
2014	-	-	-	
2015	-	-	-	
2016	-	-	-	
2017	-	-	-	
2018	712.1	651.5	60	
2019	1,220.9	1,116.9	104	
2020	1,220.9	1,116.9	104	
Total	3,153.9	2,885.3	268	
(tCO _{2e})				

[For HREHP]

Year	Estimated	Reference	Estimated	Project	Estimated	Emission
	emissions (tCO _{2e})		Emissions (tCO _{2e})		Reductions (tCO _{2e})	
2013		-		-		-
2014	-		-		-	
2015	-		-		-	
2016	-		-		-	
2017	122.4		29.3		93	
2018	1,469.3		352.7		1,116	
2019	1,469.3		352.7			1,116
2020	1,469.3		352.7		1,116	
Total	4,530.3		1,087.4		3,441	
(tCO _{2e})						

Revision history of PDD		
Version	Date	Contents revised
1.0	18/11/2018	First edition, for public inputs
2.0	11/02/2019	Revisions based on the findings from validation;
		• Section B.2
		• Section C.2
		• Section C.3
		• Annex