JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Installation of High Efficiency Air Conditioning System and Chillers in Semiconductor Factory

A.2. General description of project and applied technologies and/or measures

This project newly installs high efficiency Centrifugal Chillers and Swirling Induction type airconditioning system for a newly constructed clean room $(6,250m^2)$ to reduce CO₂ emissions from electricity consumption in the refurbishment of LSI (Large Scale Integration) and image sensor manufacturing plant at Bangkadi Industrial Park. The project air-conditioning system does not mix the air in the room and cools only the room's lower layer air, so less cooling capacity are required compare to the reference system. Air flow rate can also be set lower than that of the reference system, reducing power consumption of fan motor. In addition, the project chiller is equipped with an inverter which contributes to energy-saving by controlling the rotation speed of the compressor motor so as to continuously regulate the cooling capacity against the load to provide air conditioning system with chilled water.

A.3. Location of project, including coordinates

Country	Kingdom of Thailand	
Region/State/Province etc.:	Pathumthani	
City/Town/Community etc: Tambol Bangkadi Amphur Muang		
Latitude, longitude	13°58'47.6"N 100°33'23.0"E	

A.4. Name of project participants

The Kingdom of Thailand	Sony Device Technology (Thailand) Co., Ltd.
Japan	Sony Semiconductor Manufacturing Corporation

A.5. Duration

Starting date of project operation	01/04/2017
Expected operational lifetime of project	8 years

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the Financing Programme for JCM Model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits.

As for the transfer of technology, the manufacturers provided instruction and manuals for operation and maintenance during the initial installation. Maintenance support by the manufacturers will also be available upon request.

B. Application of an approved methodology(ies)

B.1. Selection of methodology (ies)		
Selected approved methodology No.	TH_AM003	
Version number	01.0	
Selected approved methodology No.	TH_AM006	
Version number	01.0	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

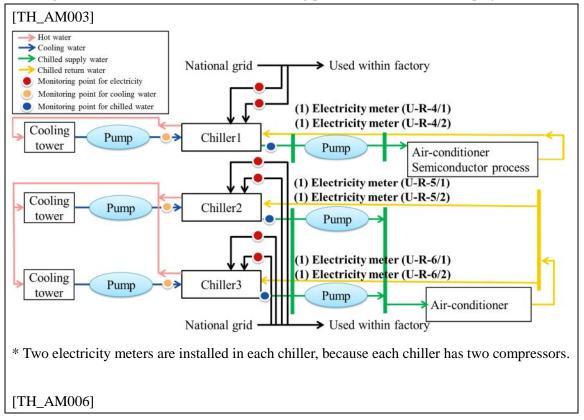
Eligibility criteria	Descriptions specified in the methodology			Project information		
Criterion 1	Project chiller is a centrifugal chiller with a capacity which is less than or equal to 1,500 USRt. * 1 USRt = 3.52 kW				The three installed chillers are the model "ETI-50" made by Mitsubishi Heavy Industries, Ltd. The project chillers are a centrifugal type with the capacity of 500 USRt each.	
	COP for project chiller <i>i</i> calculated under the standardizing temperature conditions* $(COP_{PJ,tc,i})$ is more than the threshold COP values set in the table below. ("x" in the table represents cooling capacity per unit.)				The COP of chiller 1, 2&3 (COP _{PJ, tc, i}) was calculated under the standardizing temperature conditions in the chiller inspection records provided by the	
Criterion 2	Cooling capacity per unit (USRt)	300≤x≤450	450 <x≤550< td=""><td>550<x≤825< td=""><td>825<x≤1,500< td=""><td>manufacturer. It is 6.15 (chiller 1), 6.59 (chiller 2&3) and is more than</td></x≤1,500<></td></x≤825<></td></x≤550<>	550 <x≤825< td=""><td>825<x≤1,500< td=""><td>manufacturer. It is 6.15 (chiller 1), 6.59 (chiller 2&3) and is more than</td></x≤1,500<></td></x≤825<>	825 <x≤1,500< td=""><td>manufacturer. It is 6.15 (chiller 1), 6.59 (chiller 2&3) and is more than</td></x≤1,500<>	manufacturer. It is 6.15 (chiller 1), 6.59 (chiller 2&3) and is more than
	Threshold COP value	5.59	5.69	5.85	6.06	5.69 in the table on the left.
	$\text{COP}_{\text{PJ,tc,i}}$ is calculated by altering the temperature conditions of COP of project chiller <i>i</i> (COP _{PJ,i}) from the project specific conditions to the standardizing conditions. $\text{COP}_{\text{PJ,i}}$ is derived from specifications prepared for the quotation or factory acceptance test data by manufacturer.				[Calculation result for chiller 1] $6.15 = 6.15 \times [(37 - 7 + 1.5 + 1.5) \div (37 - 7 + 1.5) + 1.5)]$	

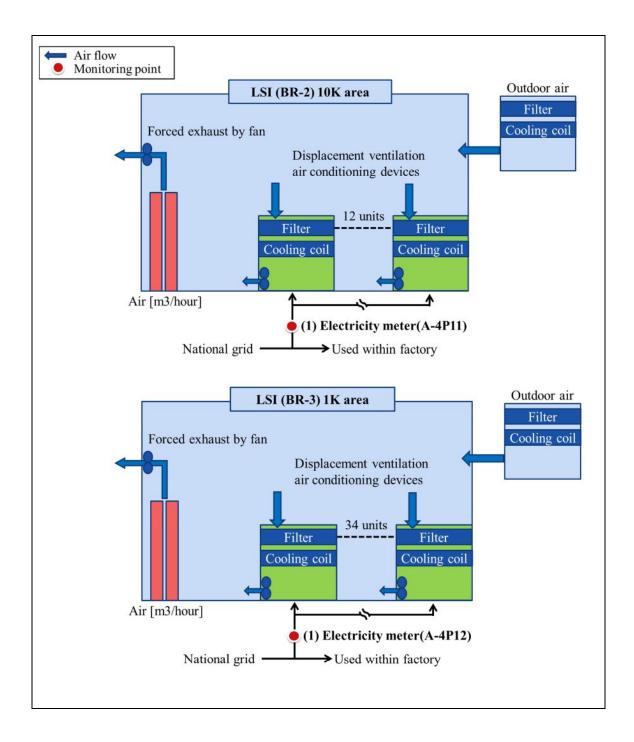
	[equation to calculate COP _{PJ,tc,i}]	[Calculation result for chiller 2 and 3]
	$\begin{array}{c} [\text{equation to carculate COPp}_{\text{J,tc,i}}] \\ \text{COP}_{\text{PJ,tc,i}} = \text{COP}_{\text{PJ,t}, i} x \left[(T_{\text{cooling-out,i}} - T_{\text{chilled-out,i}} + \text{TD}_{\text{chilled}} + \\ \text{TD}_{\text{cooling}}) \div (37 - 7 + \text{TD}_{\text{chilled}} + \text{TD}_{\text{cooling}}) \right] \end{array}$	$\begin{array}{l} \text{chiner 2 and 3} \\ \text{6.59} = 8.37 \text{ x} \left[(37 - 14 + \\ 1.5 + 1.5) \div (37 - 7 + 1.5 \\ + 1.5) \right] \end{array}$
	COP _{PJ,tc,i} : COP of project chiller <i>i</i> calculated under the standardizing temperature conditions* [-]	The value (6.15) is used not only for chiller1 but
	COP _{PJ,i} : COP of project chiller <i>i</i> under the project specific conditions [-] T _{cooling-out,i} : Output cooling water temperature of	also for chiller 2&3 since the three project chillers are the exactly same
	 project chiller <i>i</i> set under the project specific conditions [degree Celsius] T_{chilled-out,i} : Output chilled water temperature of project chiller <i>i</i> set under the project 	model with the capacity of 500 USRt each. The value is more conservative and ensures
	TD _{cooling} : Temperature difference between condensing temperature of refrigerant and output cooling water temperature 1.5 degree Celsius set as a default value [degree Celsius]	net emission reductions of the proposed project.
	TD _{chilled} : Temperature difference between evaporating temperature of refrigerant and output chilled water temperature, 1.5 degree Celsius set as a default value [degree Celsius]	
	*The standardizing temperature conditions to calculate COP _{PJ,tc,i}	
	Chilled water: output 7 degrees Celsius input 12 degrees Celsius Cooling water: output 37 degrees Celsius input 32 degrees Celsius	
Criterion 3	Periodical check is planned more than one (1) time annually.	An annual inspection, including washing of the tubes, is carried out by the manufacturer and a maintenance report is provided.
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is zero.	The refrigerant type of the project chiller is "ASAHIKLIN AK-134a (HFC-134)" by AGC Chemicals, whose ODP is zero.
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is prepared. In the case of replacing the existing chiller with the project chiller, a plan for prevention of releasing refrigerant used in the existing chiller to the air (e.g. re-use of the equipment) is prepared. Execution of this plan is checked at the time	To prevent the release of refrigerant into the atmosphere due to the project, at the time of chiller removal, the project owner plans to

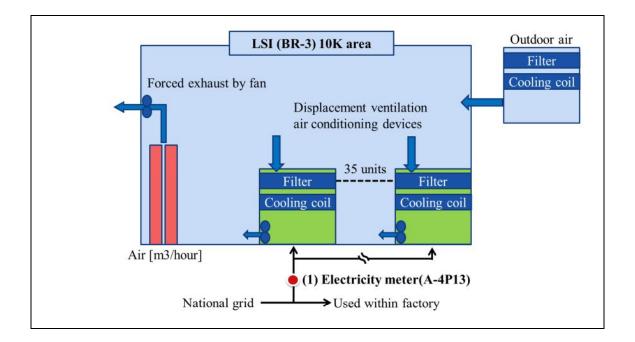
of verification, in order to confirm that refrigerant used	collect the refrigerant
for the existing one replaced by the project is prevented	from the project chiller
from being released to the air.	removed by using a
	refrigerant recovery
	machine and ensure the
	storage of the collected
	refrigerant. A letter of
	consent on not releasing
	refrigerant used for the
	project chiller was
	prepared by the
	participants from both
	sides.

[TH_AM006]

Eligibility	Descriptions specified in the methodology	Project information
criteria		
Criterion 1	Displacement ventilation air conditioning unit, whose specification of velocity of the discharged air is designed to be more than 0.5 m/s and equals to or less than 1.0 m/s, is installed in the cleanroom of semiconductor plant.	The velocity of discharged air in this air conditioning system is set at 0.83 m/s.
Criterion 2	The project displacement ventilation air conditioning unit is constituted of at least cooling coil, HEPA (high efficiency particular air) or ULPA (ultra low penetration air) filter and air supply fan in one unit.	HEPA is adopted in Class 10,000 areas with a cooling coil and air supply fan while ULPA is adopted in Class 1,000 areas with a cooling coil and air supply fan.
Criterion 3	The project displacement ventilation air conditioning unit is designed to meet the threshold values of Class 6 or class 7 of airborne particulate cleanliness class set by ISO 14644-1:2015 ¹ .	Class 6 and Class 7 are adopted in the cleanroom.
Criterion 4	The project displacement ventilation air conditioning unit only supplies cooled air.	Only a cold water coil is installed in this system so only cooled air is supplied.


C. Calculation of emission reductions


C.1. All emission sources and their associated greenhouse gases relevant to the JCM project


Reference emissions			
Emission sources	GHG type		
Power consumption by mixing ventilation air conditioning unit	CO ₂		
Power consumption by reference outdoor-air processing unit (excluded from calculation of reference emissions)	CO ₂		
Power consumption by reference chiller (excluded from calculation of reference emissions)	CO ₂		

Power consumption by reference exhaust fan (excluded from calculation of reference emissions)	CO ₂	
Power consumption by reference chiller	CO ₂	
Project emissions		
Emission sources	GHG type	
Power consumption by displacement ventilation air conditioning unit	CO ₂	
Power consumption by project outdoor-air processing unit (excluded from calculation of project emissions)	CO ₂	
Power consumption by project chiller (excluded from calculation of project emissions)	CO ₂	
Power consumption by project exhaust fan (excluded from calculation of project emissions)	CO ₂	
Power consumption by project chiller	CO ₂	

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	n/a	n/a	2,820
2018	n/a	n/a	3,744
2019	n/a	n/a	3,744
2020	n/a	n/a	3,744
2021	n/a	n/a	3,744
2022	n/a	n/a	3,744
2023	n/a	n/a	3,744
2024	n/a	n/a	3,744
2025	n/a	n/a	922
2026	-	-	-
2027	-	-	-
2028	-	-	-
2029	-	-	-
2030	-	-	-

Total (tCO ₂ e)	29,950
<pre>< = /</pre>	,

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for	No	
the proposed project	NO	

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

In order to cover a diverse group of stakeholders, Sony Device Technology (Thailand) Co., Ltd. held a local stakeholder consultation with the Thailand Greenhouse Gas Management Organization (TGO) and E-Square Inc. at Sony Device Technology (Thailand) Co., Ltd. on November 22nd, 2016. The member of TGO, Sony Device Technology (Thailand) Co., Ltd., Sony Corporate Services (Japan) Corporation. and E-Square Inc. participated in the consultation.

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received
	How were the attendees selected for	The attendees were selected after
	the LSC (Local Stakeholder	consideration by TGO prior to the
	Consultation) and would it be possible	LSC. If third parties or organizations
	for organizing the LSC to be held for	were invited to the LSC, the content
	academic researchers, students and	of the consultation would need to be
	manufacturers of similar	reconsidered and limited accordingly
	semiconductors in Thailand in order	as confidential information regarding
Thailand	to promote knowledge and technology	manufacturing is also included and
Greenhouse Gas	sharing with regard to the JCM	reported through the LSC.
Management	projects?	
Organization		No action is needed.
	Is an inverter applied to the project	An inverter is applied to all of the
	chillers?	project chillers.
		No action is needed.
	How is the COP (Coefficient of	The COP was calculated based on the
	Performance) value of the chillers	cooling capacity and electricity
	calculated and how did Sony measure	consumption which were measured

	it?	and published at the time of the
		shipping by the manufacturer.
		No action is needed.
	Does the COP reach the maximum	This project installs an inverter type
	value at full load?	chiller which can operate at the
		precise capacity needed to meet the
		demand. The COP value of the
		inverter type chiller in this project
		generally reaches its maximum in the
		following conditions:
		1) cooling water is 12 degrees (lower
		limit) and 2) the part load ratio is
		between 40% and 60%.
		No action is needed.
	Is it possible to implement the JCM	We are currently moving forward with
	projects according to the original	the implementation of these projects
	schedule of the JCM project cycle in	as per the original schedule and are
	spite of the fact that the two	aiming for the issuance of credits by
	methodologies are still under	March 2018 at the latest.
	approval?	
		No action is needed.
	What is the capacity of the project	The capacity is 500 USRt for each
	chillers?	chiller in the proposed project.
		1 1 1 5
		No action is needed.
Sony Device	What is the benefit for Thailand	GHG emission reductions with
Technology	through these JCM projects?	advanced energy saving can be
(Thailand) Co.,		achieved by installing high efficiency
Ltd.		technologies transferred from Japan
		through these projects.
		······································
		No action is needed.
Sony Corporate	How will the credits acquired through	More than half of the total credits will
Services (Japan)	these JCM projects be divided?	be allocated to the Japanese
Services (Japan)	these serve projects be divided:	be anotated to the Japanese

Corporation.	government. The project participants
	will divide and allocate the rest of
	credits through the consultation
	between Thailand and Japanese side.
	No action is needed.

F. References

Reference lists to support descriptions in the PDD, if any.

Annex

Estimated emissions reductions in each year(TH_AM003)			
Year	Estimated Reference emissions (tCO ₂ e)	Estimated Project Emissions (tCO ₂ e)	Estimated Emission Reductions (tCO ₂ e)
2013	-	-	, , , , , , , , , , , , , , , ,
2014	-	-	
2015	-	-	
2016	-	-	
2017	3,165.8	2,929.0	23
2018	4,202.0	3,887.7	314
2019	4,202.0	3,887.7	314
2020	4,202.0	3,887.7	314
2021	4,202.0	3,887.7	314
2022	4,202.0	3,887.7	314
2023	4,202.0	3,887.7	314
2024	4,202.0	3,887.7	314
2025	1,036.1	958.6	7′
2026	-	-	
2027	-	-	
2028	-	-	
2029	-	-	
2030	-	-	
Total (tCO ₂ e)			2,51

Estimated emissions reductions in each year(TH_AM006)			
Year	Estimated Reference emissions (tCO ₂ e)	Estimated Project Emissions (tCO ₂ e)	Estimated Emission Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	2,916.2	331.5	2,584
2018	3,870.6	440.4	3,430
2019	3,870.6	440.4	3,430
2020	3,870.6	440.4	3,430
2021	3,870.6	440.4	3,430
2022	3,870.6	440.4	3,430
2023	3,870.6	440.4	3,430
2024	3,870.6	440.4	3,430
2025	954.3	108.4	845
2026	-	-	-
2027	-	-	-
2028	-	-	-
2029	-	-	-
2030	-	-	-
Total (tC	Total (tCO ₂ e) 27,439		

Revision	Revision history of PDD		
Version	Date	Contents revised	
1.0	06/11/2017	First edition	
2.0	20/02/2018	Second edition	