JCM Project Design Document Form

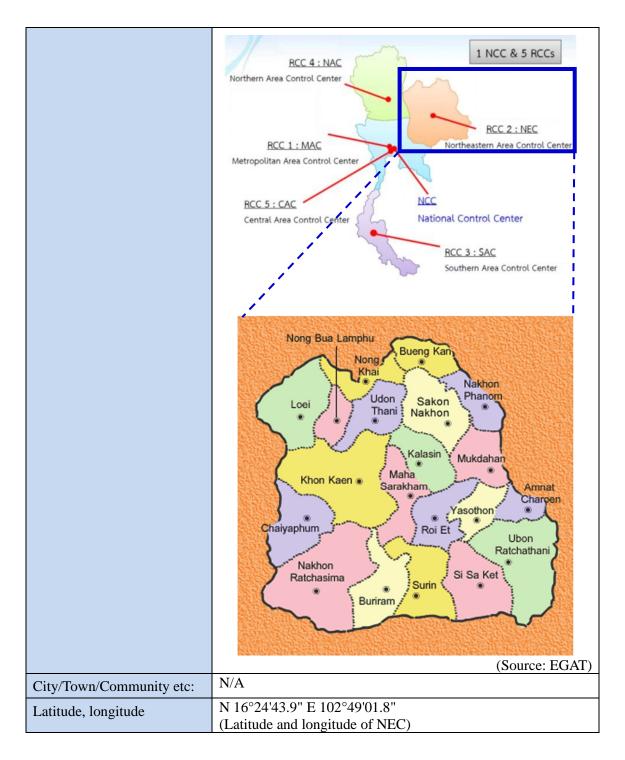
A. Project description

A.1. Title of the JCM project

Low-carbon Operation for Power Grid Utilizing Online Voltage-var(Q) Optimal Control (OPENVQ) with ICT

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to reduce CO₂ emissions by reducing transmission loss through installation of online voltage-var (Q) optimal control (OPENVQ) system to the transmission system of the Electricity Generating Authority of Thailand (EGAT).


The OPENVQ system forecasts the future power flow and supply-demand balance by using facility and measurement data in the transmission network obtained from the grid control system and by combining such data with power generation plans and weather forecasts. Then, optimally controlling voltages and reactive power online while securing voltage stability, it will make power system operation more sophisticated and efficient, leading to the reduction of power loss.

In the proposed project, OPENVQ is planned to be linked with Supervisory Control and Data Acquisition (SCADA) used in the Northeastern Area Control Center (NEC), which is one of the Regional Control Centers (RCC) operated by EGAT, to optimize voltages and reactive power in the transmission network in pursuit of reduction of power losses by utilizing measurement data, an accurate demand forecasting technology and reliable optimal current calculations.

The project is expected to reduce a total of 21,462 tCO₂ annually on average.

Country	Kingdom of Thailand
Region/State/Province etc.:	20 provinces that are covered by NEC of EGAT, namely Amnat
	Charoen, Bueng Kan, Buriram, Chaiyaphum, Kalasin, Khon
	Kaen, Loei, Maha Sarakham, Mukdahan, Nakhon Phanom,
	Nakhon Ratchasima, Nong Bua Lamphu, Nong Khai, Roi Et,
	Sakon Nakhon, Si Sa Ket, Surin, Ubon Ratchathani, Udon
	Thani, and Yasothon Provinces.

A.3. Location of project, including coordinates

A.4. Name of project participants

The Kingdom of Thailand	Electricity Generating Authority of Thailand (EGAT)
Japan	Hitachi, Ltd.

A.5. Duration

Starting date of project operation	14/11/2022
------------------------------------	------------

Expected operational lifetime of project 8 years
--

A.6. Contribution from Japan

The proposed project receives financial support from the government of Japan. The project has been selected as one of the JCM demonstration projects by the New Energy and Industrial Technology Development Organization (NEDO). As a result of the financial support provided by NEDO's program, implementation cost of the proposed project has been partially financed by the Japanese government. Furthermore, implementation of the proposed project promotes technology transfer of low carbon technologies in Thailand. Through the NEDO program, operation of OPENVQ will be monitored during the project operation. During the construction, installation, and operation of OPENVQ, Hitachi will provide technical knowhow to EGAT, and help EGAT to implement proper operation and monitoring.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

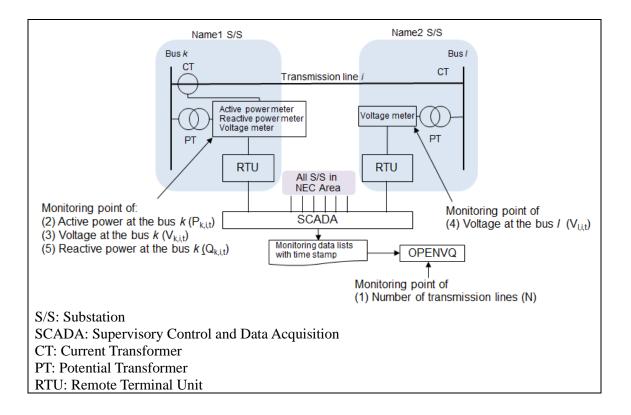
Selected approved methodology No.	TH_AM017	
Version number	01.0	

D.2. Explaina	Explanation of now the project meets englotinty criteria of the approved methodology				
Eligibility	Descriptions specified in the methodology	Project information			
criteria					
Criterion 1	The project installs OPENVQ to the control	The project installs OPENVQ to			
	system of transmission network.	the control system of the project			
		transmission network.			
Criterion 2	The project transmission network is one of the	The project installs OPENVQ to			
	five regional networks served by EGAT, in	the Northeastern Area Control			
	which each network is controlled by	Center (NEC), which is one of			
	respective regional control center (RCC). The	the EGAT's RCCs, to control			
	project transmission network has delivery	the northeastern part of			
	points which are connected to the regional	transmission network of EGAT.			
	distribution network corresponding to each of				
	the five regions managed by Metropolitan	The project transmission			
	Electricity Authority (MEA), and four	network controlled by NEC has			
	Provincial Electricity Authorities (PEA),	delivery points which are			
	Northeast, South, North, and Central,	connected to the Northeast			

B.2. Explanation of how	the project meets	eligibility criteria	of the approved met	hodology

	respectively. The project transmission network consists of transmission lines of 500kV,	PEA.
	230kV, and115kV, and substations.	The project transmission
		network consists of
		transmission lines of 500kV,
		230kV, and115kV, and
		substations.
Criterion 3	The project transmission network is monitored	The project transmission
	and operated on-line, and the data of active	network is monitored and
	power, reactive power, voltage, resistance, and	operated on-line through
	susceptance of the transmission line is	OPENVQ which is linked with
	collected remotely.	SCADA system of NEC.
		The data of active power,
		reactive power, voltage,
		resistance, and susceptance of
		the transmission line is collected
		remotely by SCADA system
		and sent to OPENVQ system
		automatically.
Criterion 4	The difference between reference	Based on the measured data
	transmission line loss calculated based on the	during sampling period from
	procedure described in F.2 and calculated	June2021 to May2022, the
	transmission line loss based on the data	calculation was conducted
	measured during sampling period is less than	following the procedure
	the difference between measured substation	described in F.2. The result is as
	loss and simulated substation loss in the case	follows:
	of installing OPENVQ based on the data	
	measured during sampling period. This is	$PL_{RE,X,lines} - PL_{measured,X,lines}$
	confirmed by satisfying the following	= 1.5(MWh)
	formula:	$PL_{measured,X,substations}$
		$-PL_{OPENVQ,X,substations}$
	$PL_{RE,X,lines} - PL_{measured,X,lines}$	= 251.3(MWh)
	$< PL_{measured,X,substations}$	
	$-PL_{OPENVQ,X,substations}$	Therefore, it is confirmed that the
		difference between reference

PL _{RE,X,lines} =	transmission line loss and
Reference transmission line loss (W)	calculated transmission line loss
$PL_{measured,X,lines} =$	based on the data measured
Measured transmission line loss in the	during sampling period is less
sampling period (W)	than the difference between
$PL_{measured,X,substations} =$	measured substation loss and
Measured substation loss in the sampling	simulated substation loss in the
period (W)	case of installing OPENVQ based
$PL_{OPENVQ,X,substations} =$	on the data measured during
Simulated substation loss in the case of	sampling period.
installing OPENVQ (W)	
The detail steps to confirm validity of	
calculation method of reference emissions are	
described in Additional Information.	


C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions			
Emission sources GHG type			
Transmission loss of transmission line	CO ₂		
Project emissions			
Emission sources	GHG type		
Transmission loss of transmission line	CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

The measurement points are shown below.

C.3. Estimated emissions reductions in each year

Year	Estimated	Reference	Estimated	Project	Estimated	Emission
	emissions (tC	O ₂ e)	Emissions (tC	$O_2 e)$	Reductions (to	$CO_2e)$
2022		34,579.6		31,869.0		2,710
2023		300,442.5		278,882.7		21,559
2024		301,265.6		279,646.7		21,618
2025		300,442.5		278,882.7		21,559
2026		300,442.5		278,882.7		21,559
2027		300,442.5		278,882.7		21,559
2028		301,265.6		279,646.7		21,618
2029		300,442.5		278,882.7		21,559
2030		250,231.5		232,274.9		17,956
Total (tCO	O ₂ e)					171,697

D. Environmental impact assessment	
Legal requirement of environmental impact assessment for	No
the proposed project	

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

The local stakeholder consultation was held to introduce the OPENVQ project and JCM scheme and solicit their comments. Notices were sent to stakeholders a month before the meeting via email.

Outline of the meeting is as below:

Date: 28/09/2022

Time: 10:00-12:00

Venue: Meeting room of the Hitachi Asia (Thailand) Co., Ltd.

Agenda:

Time	Agenda	Presenter	
10:00-10:15	Confirmation of Attendance	All	
10:15-10:25	Opening Remarks	Hitachi Asia (Thailand) Co.,	
		Ltd.	
10:25-11:00	Introduction of the project	Hitachi, Ltd. and EGAT	
11:00-11:10	Q&A All		
11:10-11:45	Introduction of JCM MRV methodology	EY ShinNihon LLC	
11:45-11:55	Q&A	zA All	
11:55-12:00	Closing Remarks	Hitachi, Ltd.	

List of participants:

	Organizations	Number of Participants	
1	Ministry of Energy (MoEN)	4	
2	Energy Policy and Planning Office (EPPO)2		
3	Energy Regulatory Commission (ERC)3		
4	Thailand greenhouse Gas Management Organization 3		
	(TGO)		
5	New Energy and Industrial Technology Development	1	
	Organization (NEDO) Representative Office in Bangkok		
6	Hitachi, Ltd. (Hitachi) 3		
7	Hitachi Asia (Thailand) Co., Ltd. 5		
8	Electricity Generating Authority of Thailand (EGAT)	3	
9	EY ShinNihon LLC	1	
Total		25	

At the meeting, the details of the proposed project and the technology to be introduced and JCM procedures including the project emission reduction effects were explained. The comments received during the local stakeholders meeting are summarized in the following section E.2. Most comments showed high expectation toward introduction of the technology. No negative opinions towards the project were received during the meeting.

Stakeholders	Comments received	Consideration of comments received
MoEN	It is glad to hear the progress of	Positive comment was received.
	Hitachi and EGAT's project. It is good	No further action is needed.
	ambition for Hitachi and EGAT to	
	promote OPENVQ in Thailand and	
	ASEAN. I am very proud that	
	Thailand will be the first country to	
	install OPENVQ.	
	How much CO2 emissions will be	5% power loss can be expected by
	reduced by introduction of OPENVQ?	introduction of OPENVQ. According
		to the preliminary calculation,
		20,000tCO2 emission reductions is
		expected annually.
		No further action is needed.
	Are there any constrains on the	There are no constrains on the
	introduction of OPENVQ depending	introduction of OPENVQ with respect
	on the type of power plant connected	to type of power plants.
	to transmission line?	No further action is needed.
	It was mentioned that the TPE will	There are accredited TPEs under
	verify the data, but who will actually	Thai-Japan JCM scheme and listed on
	do this work?	the website. One of accredited TPEs
		will conduct verification for this
		project.
		No further action is needed.
	In the presentation, a figure of CO2	The potential revenue from credit
	emission reduction for 5 years was	sales is not known at this stage,
	shown, but how much will the actual	however the project can provide
	cost of OPENVQ be paid off?	benefit by reducing fuel cost and

E.2. Summary of comments received and their consideration

		increasing sales of electricity by
		reducing transmission loss.
EDDO		No further action is needed.
EPPO	How do you handle data corrections,	A feature of OPENVQ is its ability to
	for instance uncertainty of load due to	forecast substation demand. By taking
	renewable energy?	snapshot of transmission, and using its
		data, OPENVQ can forecast grid edge
		condition with high accuracy.
		OPENVQ is able to forecast within
		5% error margin and it is considered
		as Hitachi's cutting-edge technology.
		No further action is needed.
	Is there a possibility of introducing	Currently, Hitachi is focusing on
	OPENVQ to the power distribution	transmission line because the system
	side?	on the power distribution side is
		slightly different. However,
		fundamental technology is same and
		can also be expanded to distribution
		side.
		No further action is needed.
	EGAT has forecasting system for	We know EGAT has forecasting
	renewable energy. Is there any	system for renewable energy, but this
	difference?	system is to maintain frequency. On
		the other hand, OPENVQ's purpose is
		to maintain voltage and var and
		requires forecasting for each
		substation, which is different. In
		future, there may be possibility to
		merge both technology and function.
		Therefore, Hitachi would like to
		continue discussion with EGAT.
		No further action is needed.
TGO	What if reference transmission line	Criteria 4 of the methodology is set to
	loss is more than BaU transmission	ensure that difference between
	line loss?	reference transmission line loss and
		BaU transmission line loss is smaller

than the loss reductions at the
substations in order to ensure the
conservativeness and net emission
loss.
No further action is needed.

F. References	
N/A	

Reference lists to support descriptions in the PDD, if any.

Annex

Revision history of PDD		
Version	Date	Contents revised
1.0	05/12/2022	First edition