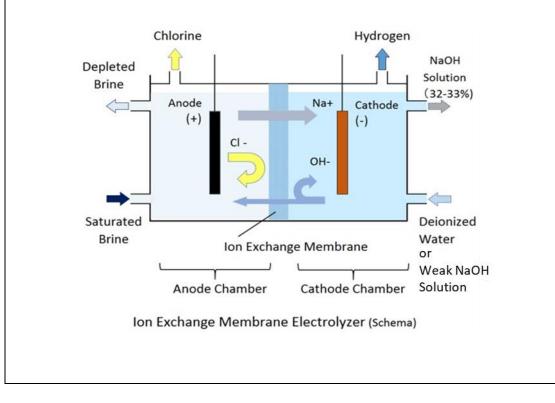
JCM Project Design Document Form

A. Project description


A.1. Title of the JCM project

Introduction of High Efficiency Ion Exchange Membrane Electrolyzer in Caustic Soda Production Plant

A.2. General description of project and applied technologies and/or measures

The Phrapradaeng Factory of AGC Chemicals (Thailand) Co, Ltd., produces caustic soda and chlorine by running production facilities where ion exchange membrane electrolyzers are in operation. One of these facilities, called "MTA-5", was built in 1990. In this project, a new production facility "MTA-9" is constructed in a new land within the Phrapradaeng Factory, where two high efficient electrolyzers are newly installed. These new electrolyzers replace the production function of the existing 20 electrolyzers in MTA-5, which reduces the power consumption and CO_2 emissions by the facility.

The production process of caustic soda (NaOH) and chlorine (Cl₂) requires a decomposition of brine (NaCl) through ion exchange membrane electrolyzer as the following formula and figure indicate.

 $2NaCl + 2H_2O \quad \rightarrow \quad 2NaOH + Cl_2 + H_2$

The project electrolyzer "nx-BiTAC" is designed to make improvements in electrodes and inner structures. It also adopts finer meshes in anode and cathode for a homogeneous distribution of electric current, and optimal inner structures for a uniform concentration of supplied brine, so that these technological improvements contribute to a reduction in resistance. The membranes installed between anode and cathode compartments of the project electrolyzer are also designed to lower resistance by improving their polymer composition. These reductions of resistance in the project electrolyzer and membrane lessen the energy loss and power consumption per unit in the production process, which results in CO_2 emission reductions.

A.3. Location of project, including coordinates

Country	The Kingdom of Thailand	
Region/State/Province etc.:	Samut Prakarn	
City/Town/Community etc:	202 Moo 1, Suksawasdi Road (Km. 17), Tambol Pak	
	KlongBang Plakod Amphur Prasamutjedi	
Latitude, longitude	13°36'45.8"N, 100°32'55.9"E	

A.4. Name of project participants

The Kingdom of Thailand	AGC Chemicals (Thailand) Co, Ltd.
Japan	AGC Inc.

A.5. Duration

Starting date of project operation	25/01/2019
Expected operational lifetime of project	8 years

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan through the Financing Program for JCM Model Projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits.

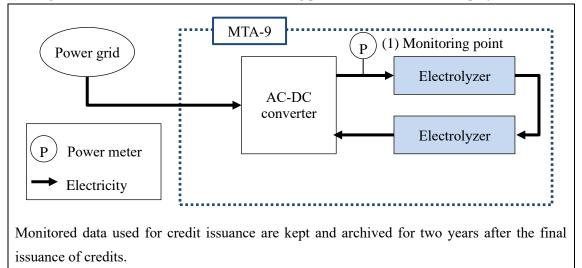
The production process of NaOH and Cl₂ with Ion Exchange Membrane (IEM) Process was licensed and technically transferred by Japanese company AGC Inc. to AGC Chemicals (Thailand) Co, Ltd., and updated IEM Electrolyzer, named nx-BiTAC, was supplied by tkUCE-Japan who manufactured in Okayama and Fujisawa. The specific operation manual (including training of nx-BiTAC installation / re-membrane work) was transferred from tkUCE-Japan to AGC Chemicals (Thailand) Co, Ltd. as well.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	JCM_TH_AM015
Version number	Ver01.0

B.2. Explanation of how the project meets eligibility criteria of the approved methodology


Eligibility	Descriptions speci	fied in the methodology	Project information
criteria			
Criterion 1	ion-exchange mer	r(s), which employs an nbrane technology, is anufacturing process of	The proposed project installs two bipolar electrolyzers which employ ion exchange membrane in the chlor-alkali manufacturing process of Phrapradaeng Factory producing caustic soda and chlorine.
Criterion 2	standard conditions degrees Celsius is a value set in the standard conditions degrees Celsius; $CD (Currentdensity) [kA/m2]$ $4.0 \le CD < 4.5$ $4.5 \le CD < 5.0$ $5.0 \le CD < 5.5$ $5.5 \le CD < 6.0$ $6.0 \le CD < 6.5$	C	The SEC value of the project electolyzer guaranteed by the manufacturer is 1,979 kWh (DC)/t-NaOH when CD is 5.79 kA/m ² and is less than the corresponding threshold SEC value.

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions		
Emission sources	GHG type	
Power consumption of reference electrolyzer CO ₂		
Project emissions		
Emission sources GHG type		
Power consumption of project electrolyzer CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	-	-	-
2018	-	-	-
2019	45,691.83	43,348.10	2,343
2020	48,907.68	46,398.99	2,508
2021	48,907.68	46,398.99	2,508
2022	48,907.68	46,398.99	2,508

C.3. Estimated emissions reductions in each year

2023	48,907.68	46,398.99	2,508
2024	48,907.68	46,398.99	2,508
2025	48,907.68	46,398.99	2,508
2026	48,907.68	46,398.99	2,508
2027	3,215.85	3,050.89	164
2028	-	-	-
2029	-	-	-
2030	-	-	-
Total (tCC	D ₂ e)		20,063

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for Yes		
the proposed project	See section "F. References"	

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

A local stakeholder consultation has been conducted on 28 November, 2018. The participants are listed in the table below.

The list of participants to the meeting has been consulted to the JCM secretariat of the Thai side (TGO: Thailand Greenhouse Gas Management Organization), and the local stakeholders to be invited have been fixed. The project participants sent invitation letters to those stakeholders to notify them of convening the local stakeholder consultation meeting. The schedule and participants of the meeting are provided below.

Date: 28 November 2018

Venue: Phrapradaeng Factory of AGC Chemicals (Thailand) Co, Ltd. Time: 10:00-12:00

Agenda:

- 1. Opening remarks
- 2. Introduction about AGC Chemicals (Thailand) Co, Ltd. and AGC Inc.
- 3. Project overview, and introduced technology and facility
- 4. Questions and answers
- 5. Plant tour

6. Closing

Participants:

[Local stakeholders]

No.	Organization	Position
1	TGO	Manager
		(Review and Monitoring Office)
2		Manager
		(Review and Monitoring Office)
3		Technical Officer
		(Review and Monitoring Office)

[Project participants]

No.	Organization			Position	
1	AGC	Chemicals	(Thailand)	Co,	Executive Director,
	Ltd.				Chief Technical Officer (CTO)
2					Director,
					Factory Manager
3					Division Manager,
					Production Division
4					Division Manager,
					Maintenance Division
5					Department Manager,
					Administration Division

A summary of the received comments and consideration of those comments are provided in Section E.2.

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received
TGO	Is MTA-9 constructed in a new land,	The construction of MTA-9 takes
	or where MTA-5 stands? Is there a	place in a new land. MTA-5 had
	capacity extension in output level by	been in operation until MTA-9
	starting operation of MTA-9?	started operation on 8 November
		2018. The output level does not
		change.
		No further action is needed.
TGO	What is the difference between	The conventional technology may be
	conventional and project	n-BiTAC, but the project

	technology?	electrolyzer adopts nx-BiTAC. One
		of the differences is the number of
		contact points between cathode mesh
		and frame: about 10,000
		points/electrolyzer for n-BiTAC and
		100,000 points/electrolyzer for nx-
		BiTAC. The increase in the contact
		points decreases IR-drop, and
		achieves homogeneous distribution
		of electric current and less energy
		consumption.
		consumption.
		No further action is needed.
TGO	How can the project technology	Reduction of electricity usage comes
	reduce electricity usage and	from the new design of electrolyzer
	greenhouse gas emission?	and membrane that increases the
		conductivity.
		No further action is needed.
TGO	Is there a captive power generator in	Yes, but it is intended only for
	project site?	emergency situation. The power
		generation capacity is too small to be
		used for operating electrolyzers.
		No further action is needed.
TGO	The electrolyzer consumes DC-	This issue will be discussed during
	power that must be converted from	the development of methodology.
	AC by using rectifier. Losses from	
	the conversion will not be accounted	No further action is needed.
	if the project monitors DC and	
	directly uses the value for	
	calculation of GHG emission	
	reduction.	

Doc.no. TorSor 1009.8/ 2366

Reference lists to support descriptions in the PDD, if any.

Annex	
N/A	

Revision history of PDD			
Version	Date	Contents revised	
01.0	16/02/2022	First edition	