JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Methane gas reduction project in Batangas and Laguna Provinces through AWD (Alternate Wetting and Drying) implementation in rice paddies

A.2. General description of project and applied technologies and/or measures

This project aims to collaborate with local farmers in the Philippines who practice continuous flooding rice cultivation and to introduce Alternate Wetting and Drying (AWD) in target fields to reduce methane emissions.

Rice cultivation in Batangas and Laguna Provinces and in the Philippines at large is predominantly characterized by irrigated, flooded fields. Baseline information collected to establish existing cropping practices shows that the plots are irrigated and under continuous flooding. Before planting, the land is ploughed to stir up the soil, so it is ready for the seedlings. After plowing, the paddies are flooded, and the seedlings are planted by hand in neat rows about 12 cm apart. Watering of the fields is only stopped after rice matures to allow for smooth harvesting.

Despite the positive aspects that rice cultivation brings to society and the world at large, it is also a major emitter of essential and long-lasting greenhouse gasses (hereafter, "GHGs") including CH₄ and N₂O, posing a significant danger to sustainable agriculture.[1] It has been established that rice fields emit around 30% and 11% of global agricultural CH₄ and N₂O emissions, respectively.[2][3] Asia accounts for about 90% of global rice production, [4] and the Philippines stands out as a significant contributor both to the extensive rice yields and GHG emission, with 3,625 kg of CH₄ per hectare was emitted from irrigated rice field.[5]

Therefore, the current project activities focus on modifying irrigation practices from continuous flooding to intermittent flooding by employing alternative wetting and drying (AWD) techniques. AWD is a simple and inexpensive way of reducing water consumption in rice production by 30%, creating conditions that significantly reduce GHG emissions.[2] It involves periodic draining of the field to a certain threshold, usually 15 cm below the soil surface, and re-flooding. A perforated tube placed in the soil enables the farmer to monitor the water level below the soil surface to determine the optimal time for irrigation.

In addition to reducing water consumption, the AWD technology has also been proven to effectively mitigate GHGs, specifically methane, from rice production by 30-70%, without causing a yield reduction.[6] During the dry phases, the methane-producing bacteria are inhibited, thus, setting a condition to reduce GHG emissions. Even when methane production temporarily ceases during dry periods, methane can still remain trapped in the soil of rice paddies. Thus, the application of AWD to rice production is essential in ensuring that the during wet phases CH₄ emission is reduced as it is shown in studies to have reduced 19.8% of annual CH4 emissions.[7]

Country	Republic of the Philippines	
Region/State/Province etc.:	Province of Batangas and Laguna	
City/Town/Community etc:	Province of Batangas	
	(1) Municipality of Nasugbu	
	(2) Municipality of Lian	
	(3) Municipality of San Juan	
	(4) Municipality of Rosario	
	(5) Municipality of Balayan	
	(6) Municipality of Calatagan	
	(7) Municipality of Lobo	
	Province of Laguna	
	(1) Municipality of Sta Maria	
	(2) Municipality of Victoria	
	(3) Municipality of Calauan	
	(4) Municipality of Nagcarlan	
Latitude, longitude	Province of Batangas	
	(1) N 14° 4' 0" and E 120° 37' 0"	
	(2) N 14° 3' 36" and E 120° 38' 24"	
	(3) N 13° 49' 0" and E 121° 23' 0"	
	(4) N 13° 50' 24" and E 121° 12' 0"	
	(5) N 13° 56' 24" and E 120° 43' 12"	
	(6) N 13° 50' 24" and E 120° 38' 24"	
	(7) N 13° 38' 24" and E 121° 15' 36"	
	Province of Laguna	

A.3. Location of	project.	including	coordinates
11.5. Location of	project,	morading	coorainates

(1) N 14° 25' 48" and E 121° 24' 0"
(2) N 14° 13' 12" and E 121° 19' 48"
(3) N 14° 8' 24" and E 121° 18' 36"
(4) N 13° 53' 24" and E 121° 21' 36"

A.4. Name of project participants

The Republic of the	University of the Philippines – Los Baños (UPLB)
Philippines	
Japan	Green Carbon, Inc.

A.5. Duration

Starting date of project operation	01/12/2024	
Expected operational lifetime of project	10 years	

A.6. Contribution from Japan

Japan contributes to this project through direct investment and the development of a carbon credit generation platform (currently under development). This initiative is driven by the demand for carbon credits from Japan, and the associated funding enables the project's implementation—making these investments a clear and vital contribution from Japan.

Green Carbon, the project proponent, is also developing a digital platform to streamline the management of data required for carbon credit generation. Once completed, this platform will significantly reduce the administrative burden on farmers. For instance, to date, it is said that project developers usually have very little support for organizing inputs for the carbon reduction calculations. To address this, we will facilitate the transition from paper-based logbooks to our digital platform, where farmers can enter their daily activities such as field operations, water management, and input usage. The app will also provide alert notifications for missing entries, helping to improve data completeness and support effective farm management. To ensure ease of use, intuitive icons and guided inputs will be implemented based on the typical sequence of farming activities. These features will not only enhance the accuracy of data collection for carbon credit issuance but also empower farmers in the Philippines with better tools for farm monitoring and planning.

More importantly, the introduction of the carbon credit system incentivizes the adoption of Alternate Wetting and Drying (AWD), which contributes to methane emission reductions in the

Philippines and supports sustainable agriculture through capacity building for local farmers. In essence, the GHG emission reduction from AWD implementation is measured and converted into carbon credits, which are sold to generate additional income for these farmers. Studies have also indicated potential increase in rice yield due to AWD. [6]

This initiative aligns with Japan's commitment to advancing climate solutions and innovation through the Joint Crediting Mechanism (JCM). The project leverages Japan's expertise in Monitoring, Reporting, and Verification (MRV) technologies to ensure transparency, accountability, and environmental integrity in carbon credit generation.

Beyond financial and technical contributions, the project fosters international collaboration by facilitating the transfer of low-emission agricultural technologies and best practices to stakeholders in the Philippines, strengthening regional cooperation on climate action. The model combining carbon finance with sustainable agricultural practices is designed to be scalable and replicable across other Southeast Asian countries with similar rice cultivation conditions, promoting broader climate benefits.

Capacity building is a core component, with workshops and on-field training empowering local farmers and communities to adopt climate-smart agricultural techniques. This strengthens local ownership, resilience, and ensures long-term sustainability of the project beyond its official period.

In addition to reducing greenhouse gases, the project delivers multiple environmental, social, and economic co-benefits aligned with the Sustainable Development Goals (SDGs), including:

Goal 1 - No Poverty

By promoting AWD during rice cultivation, the project improves yields and helps farmers in low-income regions increase their net income. Green Carbon also shares carbon credit revenues with participating farmers, enhancing their financial stability.

Goal 2 – Zero Hunger

AWD not only reduces methane emissions but also enhances root health, improves resistance to lodging and extreme weather, and supports stable yields. Positive results have been confirmed in trials conducted by Green Carbon in partnership with universities across several countries.

Goal 5 – Gender Equality

The project actively encourages female participation by offering training opportunities and promoting women's access to resources and economic activities.

Goal 6 – Clean Water and Sanitation

AWD is a water-efficient irrigation method that manages flooding in rice fields more sustainably. Research indicates it can reduce water use by up to 30% without compromising yields.[2] [6]

Goal 8 – Decent Work and Economic Growth

The project creates local employment opportunities by hiring field staff from surrounding villages to support AWD implementation and monitor water management practices.

Goal 12 – Responsible Consumption and Production

The employment of AWD addresses Target 12.2, which aims for sustainable management and efficient use of natural resources. Efficient use of resources, especially water, is vital as the Philippines faces challenges including 50 major rivers are considered biologically dead, alongside rising potable water costs.[8]

Finally, the project strictly follows internationally recognized methodologies for quantifying GHG reductions and is submitted for validation under JCM whilst considering other international best practices ensuring its credibility, transparency, and contribution to global climate goals.

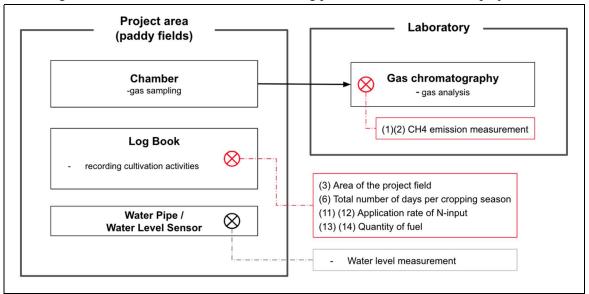
B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)		
Selected approved methodology No.	PH_AM004	
Version number	Ver1.0	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

Eligibility	Descriptions specified in the	Project information	
criteria	methodology		
Criterion 1	The project field is rice paddy field	This project involves collaboration with	
	that changes water regime during	farmers in the Province of Batangas and	
	cultivation period from	Laguna who traditionally practiced	
	continuously flooded to single or	continuous flooding irrigation. The	

	multiple drainage, or from single to multiple drainage. For the former, farmers have not conducted single or multiple drainage in the past 2 years prior to the start of the project, and for the latter, farmers have not conducted multiple drainage in the past 2 years prior to the start of the project.	project introduces Alternate Wetting and Drying (AWD) irrigation practices. Therefore, it entails a transition from continuous flooding to multiple drainage, fulfilling this criterion.
Criterion 2	A drainage is considered fully completed when the water level is observed to reach 15cm below the soil surface. To maintain yield, irrigation is carried out within 2 days after the completion of the drainage.	This project collaborates with a local university specializing in the implementation of Alternate Wetting and Drying (AWD), whereby irrigation is promptly conducted after achieving a water level of 15 cm or below.
Criterion 3	Single or multiple drainage is not required by the local or national legislation in the project field.	In the Philippines and the Province of Batangas, the introduction of AWD is recommended to secure water resources, but it is not widely adopted among farmers due to limited direct benefits. Therefore, carbon finance introduced by this project serves as a motivation for adoption.


C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions		
Emission sources	GHG type	
CH ₄ generated from rice paddy field due to activity of microorganism under anaerobic soil condition.	CH4	
N ₂ O emissions from fertilizer application.	N ₂ O	
CO ₂ emissions due to the utilization of drainage pumps used to drain	CO ₂	

water from rice paddy fields.			
CO ₂ emission due to utilization of irrigation pumps.	CO ₂		
Project emissions			
Emission sources	GHG type		
CH ₄ generated from rice paddy field due to activity of microorganism under anaerobic soil condition.	CH4		
N ₂ O emissions from fertilizer application	N ₂ O		
CO ₂ emissions due to the utilization of drainage pumps used to drain water from rice paddy fields.	CO ₂		
CO ₂ emission due to utilization of irrigation pumps.	CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

C.3. Estimated emissions reductions in each year

Year	Estimated	Reference	Estimated	Project	Estimated	Emission
	emissions (tC	O_2e)	Emissions (tC	O ₂ e)	Reductions (to	CO ₂ e)
2025		15,000.15		8,451.95		6,548.20
2026		78,293.85		44,142.77		34,151.08
2027		156,587.70		88,285.54		68,302.16
2028		156,587.70		88,285.54		68,302.16
2029		156,587.70		88,285.54		68,302.16
2030		156,587.70		88,285.54		68,302.16
Total (tCO	O ₂ e)					313,907.92

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for No		
the proposed project		

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

To solicit comments from the local stakeholders, the project participant conducted a local stakeholders consultation meeting as follows:

Batangas:

Nasugbu:

- ◆ Date /Time: June 11, 2024 / 9:36am ~11:08am
- ♦ Venue: Cafe de Nasugbu, Concepcion St, Nasugbu, Batangas
- ♦ Attendees:

University of the Philippines Los Baños (hereafter, "UPLB")

National Irrigation Administration (hereafter, "NIA")

Municipality Disaster Risk Reduction and Management Office (MDRRMO)

Local Government Unit (hereafter, "LGU")

Municipality Agriculture Office (hereafter, "MAO")

Farmers

20 attendees

◆ Invitation method:

Email / Letter / Phone call / SMS were sent a week before the date of the meeting to different Government Offices involved in the meeting along with the Farmers Cooperative and Association involved in rice production

- Meeting agenda
 - 1. Opening remark
 - 2. Participants' introduction
 - 3. Project outline and project benefit

- 4. Discussion on procedure of the project
- 5. Open forum (Q & A)
- 6. Closing remark

Lian:

- ◆ Date /Time: November 7, 2024 / 1:30 pm ~ 4:00 pm
- ◆ Venue: So. Molino Kapito Lian, Batangas
- ◆ Attendees:

UPLB

Green Carbon MAO of Lian Leaders of Different Rice Farmer Associations

19 Attendees

◆ Invitation method:

Email / Letter / Phone call / SMS were sent a week before the date of the meeting to Farmers Cooperative and Association involved in rice production

◆ Meeting agenda

Introduction of stakeholders

Short discussion about the project and AWD system

Q&A with stakeholders

Field demo for gas sampling

Balayan:

- ◆ Date /Time: December 19, 2024 / 9:30 am ~ 12:00 pm
- ◆ Venue: AVP Room, Office of Municipal Agriculture, Balayan, Batangas, Philippines
- ◆ Attendees:

Green Carbon, Inc. Managers Farmer Leaders of Balayan MAO of Balayan

16 attendees

◆ Invitation method:

The invitation was made by the Municipal Agricultural Office through their Facebook Messenger Group together with the different Farmers/Stakeholders involved in the rice production of Balayan, Batangas.

The invitation does not involve discrimination on the basis of gender; thus, men and women have the equal right to attend the stakeholder meeting.

- Meeting agenda
 - 1. Opening of the meeting
 - 2. Explanation of the project in non-technical terms to cover:

The AWD Project was presented by Green Carbon Project Manager Mr. Paolo Tatlonghari. The following topics were discussed:

- Company overview
- Project Development Policy
- Advanced AWD Project (Vietnam, Philippines)
- AWD (Methane gas emission from paddy fields)
- AWD (Image and benefit)
- AWD project result in Vietnam and Philippines
- Green Carbon's willingness (AWD project)
- Benefit for the Province
- 3. Question and answer session about the project
- 4. Information on next steps and contact details
- 5. Field demonstration for the gas sampling using the gas chamber
- 6. Closure of the meeting

Other consultations:

In the sessions targeted at the Barangay level, where various farmers are coordinated, we primarily discussed the project overview and the management structure and information dissemination scheme for the farmers. Regarding the management structure and information dissemination, we reached an agreement to operate the project by following the current on-site management system that is in place.

Laguna:

<u>Sta Maria:</u>

- ◆ Date /Time: November 14, 2024 / 9:00 am ~ 12:00 pm
- ◆ Venue: Sta. Maria Municipal Covered Court, Laguna
- ♦ Attendees:

Jaira Gaviola, Green Carbon

Patrick Rocamora, UPLB Professor

Sophia Bugia, UPLB Researcher

Ella Rafael, UPLB Researcher

Farmers

Agricultural Technicians

MAO of Sta. Maria

Total attendees: 38

- Meeting agenda
 - 1. Gather farmers who will join the project
 - 2. Discussion of AWD and its benefits
 - 3. Discussion regarding the number of hectares, planting date, project site
 - 4. Farmers inquiries

Green Carbon presented its company profile, project details, and objectives to provide farmers with essential information about the initiative. The local Green Carbon Manager, along with representatives from the University of the Philippines Los Baños (UPLB), explained the Alternate Wetting and Drying (AWD) methodology to the farmers. The team outlined benefits available to participants, including technical training opportunities, water conservation methods, employment possibilities, and profit-sharing arrangements. Green Carbon arranged this meeting through the Municipal Agriculture Office (MAO) of Sta. Maria, coordinating with Mr. Carlo Sumaria. Farmer comprehension of the project was identified as critical since their decision to participate would determine project viability. The project cannot proceed without securing farmer cooperation and engagement.

Stakeholders	Comments received	Consideration of comments received
А	The local Government of Nasugbu	The issue was resolved with the help
representative	cannot make a commitment towards	of the Municipal Administrator Mr.

E.2. Summary of comments received and their consideration

from the Local	the farmers' availability without a	Emer Bordeos who mentioned that
Government of	signed MOA.	the training can be commenced soon
Nasugbu		given that the farmers organization
		agrees with it. The farmers' leader
(Nasgubu,		agreed to the proposal, confirming
Batangas)		participants for training and
		discussion for the project site which
		will follow in the coming days.
Representative	What gasses will be gathered during	Mr. Rocamora stated that methane
from the	the project and will the gas chamber	and carbon dioxide would be the
Municipal	be installed on the field permanently?	gasses that will be collected and
Environment		analyzed while the gas chamber will
and Natural		not be installed but instead be
Resources		brought from one farm to another to
Office		gather gas
(MENRO)		
Engr. Dolores		
Robles		
(Nasgubu,		
Batangas)		
Farmers of	Stated that out of the 800 hectares	Mr. Rocamora expressed that given
Nasugbu	that is serviceable by the irrigator's	the situation, it would be ideal to get
	association, there are already 200	farmers who have not planted yet. He
(Nasgubu,	hectares planted with rice, thus about	also mentioned that preferred areas
Batangas)	500 hectares would only be available	should be closely between each other
	for data collection. Farmers would	to make data collection easier. It must
	start planting by July.	also be homogenous and have control
		over water to be able to implement
		AWD. There will also be a
		biophysical assessment of the area.
Ms. Lora	Aired their concern for the	Mr. Rocamora mentioned that the
Destreza, the	continuation of the project since there	training can push through even if
Municipal	are still no existing MOA. She also	there are still no MOA given that the
Agricultural	asked about the coverage of the	LGU and the farmers agree with it.
Officer	training.	For the training that would be given,

		it would cover the same training of
(Nasgubu,		gas and data collection that was done
Batangas)		in Vietnam. Training can be done
Dutungus)		both face to face and virtually,
		depending on the availability of
		participants.
Local Farmers	Han will the former maritan that	
Local Farmers	How will the farmer monitor that	We will check your logbook where
	AWD is being implemented?	you will add a log whenever you
(Sta Maria,		irrigate, and we will ask the help of
Laguna)		MAO personnel to help us monitor
		the logbooks and the area where
		AWD is being implemented.
Local Farmers	Are all the corners of the paddy field	No, we will scatter the pvc pipes on
	installed with pani pipes?	the project site and will select an area
(Sta Maria,		to install the pvc pipe that is near the
Laguna)		water entry
Local Farmers	Who will collect the vial and where	The vials for the gas sampling will be
	will we put it?	collected by UPLB after the gas
(Sta Maria,		sampling.
Laguna)		
Local Farmers	Do we lower the gas chambers in	Yes, even if it is flooded, the
	flooded fields?	chambers will be lowered on the
(Sta Maria,		field.
Laguna)		
Local Farmers	When do we measure the water	It will be everyday at any time of the
	inside the pipes?	day. We will have a contact person to
(Sta Maria,		communicate between the farmers
Laguna)		and UPLB/Green Carbon.
Local Farmers	Do we remove the water inside the	No, we will just leave it be. As long
	pvc pipe after measuring the water	as there is no rain, the water inside
(Sta Maria,	inside?	the pvc pipe should go down. When
Laguna)		there is no water inside the pvc pipe,
		we will ask you to irrigate the plot.
Local Farmers	In our experience when the field is	It's okay, the cracks don't mean that
	left with no water for two days, the	there is no water left under the soil.
(Sta Maria,	soil cracks.	The pvc is the important
× /		1 I

Laguna)		measurement if there is still water or
		not. Water saving will be efficient
		because we will only water the field
		once the pvc pipe is empty of water.
		Water will stay mostly for one week.
Local Farmers	What if we missed the water	We will coordinate with NIA
	schedule because of AWD?	regarding your water schedule so we
(Sta Maria,		can schedule the irrigation for AWD
Laguna)		implementation. Communication
		with the farmers will be done
		everyday so we can confirm the
		schedule.
Local Farmers	If our municipality joins the AWD	Yes, we will monitor it everyday
	project would you monitor the AWD	using the PVC pipes installed in the
(Sta Maria,	implementation everyday? Will you fields. However, we will not be	
Laguna)	be on-site everyday?	site.
Local Farmers	What time do we collect water and	Gas sampling is done between 7am
	gas sample?	to 10am and water monitoring is
(Sta Maria,		done anytime of the day.
Laguna)		
Local Farmers	How many pipes will you put in 1	We will base the number of pipes on
	hectare?	the topography and leveling of the
(Sta Maria,		soil.
Laguna)		
Local Farmers	Where will we do gas sampling?	We will base it on the map to select
		the most suitable site to do gas
(Sta Maria,		sampling.
Laguna)		
Local Farmers	How many people do you need for	12 people at least
	gas sampling?	
(Sta Maria,		
Laguna)		

F. References

[1] Sun, Huifeng, Sheng Zhou, Zishi Fu, Guifa Chen, Guoyan Zou, and Xiangfu Song. "A

Two-Year Field Measurement of Methane and Nitrous Oxide Fluxes from Rice Paddies under Contrasting Climate Conditions." *Scientific Reports* 6, no. 1 (June 20, 2016): 28255. https://doi.org/10.1038/srep28255.

[2] International Rice Research Institute. "Alternate Wetting and Drying." GHG Mitigation in Rice. Accessed March 3, 2025. https://ghgmitigation.irri.org/mitigation-technologies/alternate-wetting-and-drying.

[3] Gupta K, Kumar R, Baruah KK, Hazarika S, Karmakar S, Bordoloi N. Greenhouse gas emission from rice fields: a review from Indian context. *Environ Sci Pollut Res Int*. 2021 Jun;28(24):30551-30572. doi: 10.1007/s11356-021-13935-1. Epub 2021 Apr 27. PMID: 33905059.

[4] Reddy, V, and Dil Rahut. MULTIFUNCTIONALITY of RICE PRODUCTION SYSTEMS in ASIA a Synoptic Review ADBI Series on Asian and Pacific Sustainable Development *ASIAN DEVELOPMENT BANK INSTITUTE*. 2023.

[5] Bautista, Elmer Granadozo, and Masanori Saito. "Greenhouse Gas Emissions from Rice Production in the Philippines Based on Life-Cycle Inventory Analysis." ResearchGate, 2016, www.researchgate.net/publication/273636139_Greenhouse_gas_emissions_from_rice_producti on_in_the_Philippines_based_on_life-cycle_inventory_analysis.

[6] Cheng, Haomiao, Kexin Shu, Tengyi Zhu, Liang Wang, Xiang Liu, Wei Cai, Zhiming Qi, and Shaoyuan Feng. "Effects of Alternate Wetting and Drying Irrigation on Yield, Water and Nitrogen Use, and Greenhouse Gas Emissions in Rice Paddy Fields." *Journal of Cleaner Production* 349 (May 15, 2022): 131487. https://doi.org/10.1016/j.jclepro.2022.131487.

[7] Li, Jianling, et al. "Annual Greenhouse Gas Emissions from Rice Paddy with Different Water-Nitrogen Management Strategies in Central China." *Soil & Tillage Research*, vol. 235, 1 Jan. 2024, pp. 105906-105906, https://doi.org/10.1016/j.still.2023.105906. Accessed 10 Nov. 2023.

[8] Rola, Agnes, et al. "Challenges of Water Governance in the Philippines." Philippine Journal of Science, vol. 144, no. 2, 2015, pp. 197–208,

philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol144no2/pdf/challenges_of_water_governance _in_the_Phils_FinalCopy_05_April_2016.pdf.

Annex				
	ted emissions reductions for a	2031-2034		
Year	Estimated Reference	Estimated Project	Estimated Emission	
	emissions (tCO2e)	Emissions (tCO2e)	Reductions (tCO2e)	
2031	156,587.70	88,285.54	68,302.10	
2032	156,587.70	88,285.54	68,302.10	
2033	156,587.70	88,285.54	68,302.16	
2034	156,587.70	88,285.54	68,302.16	
Total (tCO2e)			273,208.64	
Annex 2: Estima Year	Estimated Reference	Estimated Project	Estimated Emission	
Annex 2: Estima	ted emissions reductions for	the entire project lifeti	me	
	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)	
2025	15,000.15			
2026	78,293.85			
2027	156,587.70			
2028	156,587.70	88,285.54 68,302.1		
2029	156,587.70	88,285.54 68,302.		
2030	156,587.70	88,285.54 68,302.		
2031	156,587.70	88,285.54 68,302		
2032	156,587.70	88,285.54 68,30		
2033	156,587.70	88,285.54	68,302.10	
2034	156,587.70	0 88,285.54 68,302.16		
Total (tCO ₂ e)				

Reference lists to support descriptions in the PDD, if any.

Revision history of PDD			
Version	Date	Contents revised	
1.0	23/05/2025	First Version	