JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Methane gas reduction project in Bulacan Province through AWD (Alternate Wetting and Drying) implementation in rice paddies

A.2. General description of project and applied technologies and/or measures

This project aims to collaborate with local farmers in the Philippines who practice continuous flooding rice cultivation and to introduce Alternate Wetting and Drying (AWD) in target fields to reduce methane emissions.

Rice cultivation in Bulacan Province and in the Philippines at large is predominantly characterized by irrigated, flooded fields. Baseline information collected to establish existing cropping practices shows that the plots are irrigated and under continuous flooding. Before planting, the land is ploughed to stir up the soil, so it is ready for the seedlings. After plowing, the paddies are flooded, and the seedlings are planted by hand in neat rows about 12 cm apart. Watering of the fields is only stopped after rice matures to allow for smooth harvesting.

Despite the positive aspects that rice cultivation brings to society and the world at large, it is also a major emitter of essential and long-lasting greenhouse gasses (hereafter, "GHGs") including CH₄ and N₂O, posing a significant danger to sustainable agriculture.[1] It has been established that rice fields emit around 30% and 11% of global agricultural CH₄ and N₂O emissions, respectively.[2][3] Asia accounts for about 90% of global rice production, [4] and the Philippines stands out as a significant contributor both to the extensive rice yields and GHG emission, with 3,625 kg of CH₄ per hectare was emitted from irrigated rice field.[5]

Therefore, the current project activities focus on modifying irrigation practices from continuous flooding to intermittent flooding by employing alternative wetting and drying (AWD) techniques. AWD is a simple and inexpensive way of reducing water consumption in rice production by 30%, creating conditions that significantly reduce GHG emissions.[2] It involves periodic draining of the field to a certain threshold, usually 15 cm below the soil surface, and re-flooding. A perforated tube placed in the soil enables the farmer to monitor the water level below the soil surface to determine the optimal time for irrigation.

In addition to reducing water consumption, the AWD technology has also been proven to

effectively mitigate GHGs, specifically methane, from rice production by 30-70%, without causing a yield reduction.[6] During the dry phases, the methane-producing bacteria are inhibited, thus, setting a condition to reduce GHG emissions. Even when methane production temporarily ceases during dry periods, methane can still remain trapped in the soil of rice paddies. Thus, the application of AWD to rice production is essential in ensuring that the during wet phases CH₄ emission is reduced as it is shown in studies to have reduced 19.8% of annual CH4 emissions.[7].

Country	Republic of the Philippines		
Region/State/Province etc.:	Province of Bulacan		
City/Town/Community etc:	(1) Municipality of Baliwag		
	(2) Municipality of Pulilan		
	(3) Municipality of San Miguel		
	(4) Municipality of San Ildefonso		
	(5) Municipality of San Rafael		
Latitude, longitude	(1) N 14° 54' 11" and E 120° 51' 11"		
	(2) N 14° 57' 00" and E 120° 54' 00"		
	(3) N 15° 04' 00" and E 120° 56' 00"		
	(4) N 15° 08' 45" and E 120° 58' 24"		
	(5) N 15° 01' 48" and E 120° 52' 48"		

A.3. Location of project, including coordinates

A.4. Name of project participants

The Republic of the	University of the Philippines – Los Baños (UPLB)
Philippines	
Japan	Green Carbon, Inc.
	Nippon Koei Co., Ltd
	Fuyo General Lease Co., Ltd.

A.5. Duration

Starting date of project operation	1/08/2024
Expected operational lifetime of project	10 years

A.6. Contribution from Japan

Japan contributes to this project through direct investment and the development of a carbon credit generation platform (currently under development). This initiative is driven by the

demand for carbon credits from Japan, and the associated funding enables the project's implementation—making these investments a clear and vital contribution from Japan.

Green Carbon, the project proponent, is also developing a digital platform to streamline the management of data required for carbon credit generation. Once completed, this platform will significantly reduce the administrative burden on farmers. For instance, to date, it is said that project developers usually have very little support for organizing inputs for the carbon reduction calculations. To address this, we will facilitate the transition from paper-based logbooks to our digital platform, where farmers can enter their daily activities such as field operations, water management, and input usage. The app will also provide alert notifications for missing entries, helping to improve data completeness and support effective farm management. To ensure ease of use, intuitive icons and guided inputs will be implemented based on the typical sequence of farming activities. These features will not only enhance the accuracy of data collection for carbon credit issuance but also empower farmers in the Philippines with better tools for farm monitoring and planning.

More importantly, the introduction of the carbon credit system incentivizes the adoption of Alternate Wetting and Drying (AWD), which contributes to methane emission reductions in the Philippines and supports sustainable agriculture through capacity building for local farmers. In essence, the GHG emission reduction from AWD implementation is measured and converted into carbon credits, which are sold to generate additional income for these farmers. Studies have also indicated potential increase in rice yield due to AWD. [6]

This initiative aligns with Japan's commitment to advancing climate solutions and innovation through the Joint Crediting Mechanism (JCM). The project leverages Japan's expertise in Monitoring, Reporting, and Verification (MRV) technologies to ensure transparency, accountability, and environmental integrity in carbon credit generation.

Beyond financial and technical contributions, the project fosters international collaboration by facilitating the transfer of low-emission agricultural technologies and best practices to stakeholders in the Philippines, strengthening regional cooperation on climate action. The model combining carbon finance with sustainable agricultural practices is designed to be scalable and replicable across other Southeast Asian countries with similar rice cultivation conditions, promoting broader climate benefits.

Capacity building is a core component, with workshops and on-field training empowering local

farmers and communities to adopt climate-smart agricultural techniques. This strengthens local ownership, resilience, and ensures long-term sustainability of the project beyond its official period.

In addition to reducing greenhouse gases, the project delivers multiple environmental, social, and economic co-benefits aligned with the Sustainable Development Goals (SDGs), including:

Goal 1 – No Poverty

By promoting AWD during rice cultivation, the project improves yields and helps farmers in low-income regions increase their net income. Green Carbon also shares carbon credit revenues with participating farmers, enhancing their financial stability.

Goal 2 – Zero Hunger

AWD not only reduces methane emissions but also enhances root health, improves resistance to lodging and extreme weather, and supports stable yields. Positive results have been confirmed in trials conducted by Green Carbon in partnership with universities across several countries.

Goal 5 – Gender Equality

The project actively encourages female participation by offering training opportunities and promoting women's access to resources and economic activities.

Goal 6 – Clean Water and Sanitation

AWD is a water-efficient irrigation method that manages flooding in rice fields more sustainably. Research indicates it can reduce water use by up to 30% without compromising yields.[2] [6]

Goal 8 – Decent Work and Economic Growth

The project creates local employment opportunities by hiring field staff from surrounding villages to support AWD implementation and monitor water management practices.

Goal 12 – Responsible Consumption and Production

The employment of AWD addresses Target 12.2, which aims for sustainable management and efficient use of natural resources. Efficient use of resources, especially water, is vital as the Philippines faces challenges including 50 major rivers are considered biologically dead, alongside rising potable water costs.[8]

Finally, the project strictly follows internationally recognized methodologies for quantifying GHG reductions and is submitted for validation under JCM whilst considering other international best practices ensuring its credibility, transparency, and contribution to global climate goals.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	JCM_PH_AM004	
Version number	Ver1.0	

Eligibility	Descriptions specified in the	Project information	
criteria	methodology		
Criterion 1	The project field is rice paddy field	This project involves collaboration with	
	that changes water regime 1 during	farmers in the Province of Bulacan who	
	cultivation period from	traditionally practiced continuous	
	continuously flooded to single or	flooding irrigation. The project	
	multiple drainage, or from single to	introduces Alternate Wetting and Drying	
	multiple drainage.	(AWD) irrigation practices. Therefore, it	
		entails a transition from continuous	
	For the former, farmers had not	flooding to multiple drainage, fulfilling	
	practiced single or multiple	this criterion.	
	drainage in the two years prior to		
	the project's start, and for the latter,		
	farmers have not conducted		
	multiple drainage in the past 2		
	years prior to the start of the		
	project.		
Criterion 2	A drainage is considered fully	This project collaborates with a local	
	completed when the water level is	university specializing in the	
	observed to reach 15cm below the	implementation of Alternate Wetting and	
	soil surface. To maintain yield,	Drying (AWD), whereby irrigation is	
	irrigation is carried out within 2	promptly conducted after achieving a	
	days after the completion of the	water level of 15 cm or below.	
	drainage.		

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

Criterion 3	Single or multiple drainage is not	In the Philippines and the Province of
	required by the local or national	Bulacan, the introduction of AWD is
	legislation in the project field.	recommended to secure water resources,
		but adoption among farmers remains low
		due to its limited direct benefits. Thus,
		the carbon finance mechanism introduced
		by this project serves as an incentive for
		adoption.

C. Calculation of emission reductions			
C.1. All emission sources and their associated greenhouse gases relevant to the JCM project			
Reference emissions			
Emission sources	GHG type		
CH ₄ generated from rice paddy field due to activity of microorganism under anaerobic soil condition.	CH4		
N ₂ O emissions from fertilizer application.	N ₂ O		
CO ₂ emissions due to the utilization of drainage pumps used to drain	CO ₂		
water from rice paddy fields.			
CO ₂ emission due to utilization of irrigation pumps	CO ₂		
Project emissions			
Emission sources	GHG type		
CH ₄ generated from rice paddy field due to activity of microorganism under anaerobic soil condition.	CH4		
N ₂ O emissions from fertilizer application	N ₂ O		
CO ₂ emissions due to the utilization of drainage pumps used to drain water from rice paddy fields	CO ₂		
CO ₂ emission due to utilization of irrigation pumps.	CO ₂		

C.2. Figure of all emission sources and monitoring points relevant to the JCM project

C.3. Estimated emissions reductions in each year

Year	Estimated	Reference	Estimated	Project	Estimated	Emission
	emissions (tC	O ₂ e)	Emissions (tC	$O_2e)$	Reductions (tC	O ₂ e)
2024		8,151.09		4,563.96		3,587.13
2025		35,350.29		19,848.74		15,501.55
2026		130,398.15		73,337.22		57,060.93
2027		289,938.66		163,316.56		126,622.10
2028		449,479.17		253,295.90		196,183.27
2029		478,621.53		269,938.02		208,683.52
2030		478,621.53		269,938.02		208,683.52
Total (tCO	D ₂ e)					816,322.01

D. Environmental impact assessment		
Legal requirement of environmental impact assessment for	No	
the proposed project		

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

To solicit comments from the local stakeholders, the project participant conducted a local stakeholders consultation meeting as follows:

Pulilan

- ◆ Date /Time: 27 June 2024 9:00-11:30
- Venue: Residence of Joselito Calderon, Brgy Tinejero, Pulilan, Bulacan
- Attendees (total of 20 participants representing the following organizations):

-Green Carbon, Inc. (project developer)

-Local Government of Pulilan (LGU)

-Farmers of Pulilan

-The University of Philippines Los Banos (UPLB)

Baliwag

- ◆ Date /Time: 27 June 2024 13:30-16:00
- Venue: Barangay Calantipay, Barangay Hall of Baliwag, Bulacan
- Attendees (total of 25 participants representing the following organizations):

-Green Carbon, Inc. (project developer)

-Local Government of Baliwag (LGU)

-Farmers of Baliwag

-The University of Philippines Los Banos (UPLB)

San Miguel

- ◆ Date /Time: 28 June 2024 9:00-11:30
- Venue: Brgy Camias, Brgy Hall, San Miguel, Bulacan
- ◆ Attendees (total of 19 participants representing the following organizations):

-Green Carbon, Inc. (project developer)

-Local Government of San Miguel(LGU)

-Farmers of San Miguel

-Agricultural Technicians (ATs)

-The University of Philippines Los Banos (UPLB)

San Ildefonso

- ◆ Date /Time: 16 July 2024 9:00-12:00
- Venue: Barangay Telapatio, Barangay Hall, San Ildefonso, Bulacan
- Attendees (total of 10 participants representing the following organizations):

-Green Carbon, Inc. (project developer)

-Local Government of San Ildefonso (LGU)

-Farmers of San Ildefonso

-The University of Philippines Los Banos (UPLB)

San Rafael

- ◆ Date /Time: 15 January 2025 8:00-10:30
- ◆ Venue: Dr. Guizano, Brgy. Capihan, San Rafael, Bulacan
- Attendees (total of 35 participants representing the following organizations):

-Green Carbon, Inc. (project developer)

-Local Government of San Rafael (LGU)

-Farmers of San Rafael

- Agricultural Technicians (ATs)
- -The University of Philippines Los Banos (UPLB)

--

The public and private entities mentioned above have been identified as stakeholders, and invitations were sent via letter or email through the office of the Municipal Agriculturist. This was done as the project participant, Green Carbon, Inc., has agreed to cooperate in proceeding with the project. Email / Letter/Phone call/SMS were sent a week before the date of the meeting to different Government Offices involved in the meeting together with the Farmers Cooperative and Association involved in rice production.

♦ Meeting agenda

-Opening remark

-Participants introduction

-Project outline and project benefit

-Discussion on procedure of the project

-Open forum (Q & A)

-Closing remark

♦ Summary

AWD was introduced to the farmers as a water saving technology. Types of greenhouse gases, specifically methane, nitrous oxide and carbon dioxide were discussed as types of greenhouse gases that affect climate change.

The trainers discussed how to perform AWD to the farmers - from the plot allocation all the way to lab analysis. The farmers also participated in demos and were taught how to use the pipes, irrigate, perform sampling using gas chambers, and the timelines to perform AWD. The trainers

also discussed the performance of gas chromatography from the gas sampling using chambers, up to the analysis level and its relevance. Gas chromatography is done to check the effectiveness of AWD in yield and growth of plants as well as the size of leaf. Soil testing is also done prior to performing gas chromatography and sampling.

Stakeholders	Comments received	Consideration of comments received	
Farmers	Concerns over the AWD that they	The project will not change any of	
	might change their cropping	their agricultural practices other than	
	techniques given the joining of the	their water management regime	
	project		
Farmers	How long will the project be?	The minimum duration of the project	
		is at least 2 years, allowing for	
		comparison between wet and dry	
		season cropping.	
Farmers	Are there any requirements for the	The only requirement is that they	
	farmers who would like to join the	should be classified as irrigated rice	
	project? producers.		
Farmers	What is the minimum size of farm There is no minimum		
	lands farmers must possess to join?	required, as long as we can gather a	
		total of at least 200 hectares for the	
		entire municipality.	
LGU	What would be the participation of	The MAO will monitor the	
Representatives	the MAO during the implementation	implementation of the project and	
	of the project?	will also support GC and UPLB	
		during water monitoring and gas	
		sampling.	
	Some farmers and ATs sought	While we addressed these inquiries	
	clarification on eligibility and	directly during the training, in	
Farmers /	participation, asking if there were	addition, we organized regular	
Farmer Leaders	minimum land requirements, what to	communication channels with the	
Tarmer Leaders	do if the field was located near a	farmers via FB messenger, with	
	road, and whether they could join the	UPLB in order to monitor any	
	project if they had already planted	comments and queries along the	

E.2. Summary of comments received and their consideration

	crops. Additionally, they inquired	project.	
	about the gas sampling process,		
	including the number of plots needed	It was stressed that UPLB and GC	
	and the distance considerations for	Local staff will constantly be	
	selecting participating farmers.	available for any challenges or	
		queries regarding the new	
	Several questions focused on the	methodology done by the farmers.	
	formal agreements and	Farmers were reassured that all costs,	
	compensation, with farmers asking if	including equipment and supplies,	
	there was a contract between their	would be covered by the project, and	
	municipality and Green Carbon, and	were informed about the	
whether they would need to spend		compensation structure for their	
	any money to join the project.	participation in gas sampling and	
		water monitoring.	
	Some inquired about the water	All questions were addressed and Ats	
	management aspects of the project,	were informed about the direct	
	such as how irrigation works with	communication channels and regular	
	PVC pipes, the use of water pumps,	and weekly visits that local GC staff	
	and whether the field conditions, like	would do throughout the monitoring	
A gri gultural	dryness, affect weed growth or crop	period, with UPLB. Green Carbon	
Tachniciana	yield. They also asked about the daily	and UPLB explained in digestible	
from MAO	water monitoring process and	detail about carbon credits generated	
ITOIII MAO	whether all farmers would be	and the overall benefits for the	
	required to monitor the water levels	farmers participating in the initiative,	
	every day.	including how AWD practices might	
		impact crop yield and weed growth,	
	Finally, some questions addressed the	as well as the long-term duration of	
	project's goals and its sustainability.	the project.	

F. References

[1] Sun, Huifeng, Sheng Zhou, Zishi Fu, Guifa Chen, Guoyan Zou, and Xiangfu Song. "A Two-Year Field Measurement of Methane and Nitrous Oxide Fluxes from Rice Paddies under Contrasting Climate Conditions." *Scientific Reports* 6, no. 1 (June 20, 2016): 28255. https://doi.org/10.1038/srep28255. [2] International Rice Research Institute. "Alternate Wetting and Drying." GHG Mitigation in Rice. Accessed March 3, 2025.

https://ghgmitigation.irri.org/mitigation-technologies/alternate-wetting-and-drying.

[3] Gupta K, Kumar R, Baruah KK, Hazarika S, Karmakar S, Bordoloi N. Greenhouse gas emission from rice fields: a review from Indian context. *Environ Sci Pollut Res Int*. 2021 Jun;28(24):30551-30572. doi: 10.1007/s11356-021-13935-1. Epub 2021 Apr 27. PMID: 33905059.

[4] Reddy, V, and Dil Rahut. MULTIFUNCTIONALITY of RICE PRODUCTION SYSTEMS in ASIA a Synoptic Review ADBI Series on Asian and Pacific Sustainable Development *ASIAN DEVELOPMENT BANK INSTITUTE*. 2023.

[5] Bautista, Elmer Granadozo, and Masanori Saito. "Greenhouse Gas Emissions from Rice Production in the Philippines Based on Life-Cycle Inventory Analysis." ResearchGate, 2016, www.researchgate.net/publication/273636139_Greenhouse_gas_emissions_from_rice_producti on_in_the_Philippines_based_on_life-cycle_inventory_analysis.

[6] Cheng, Haomiao, Kexin Shu, Tengyi Zhu, Liang Wang, Xiang Liu, Wei Cai, Zhiming Qi, and Shaoyuan Feng. "Effects of Alternate Wetting and Drying Irrigation on Yield, Water and Nitrogen Use, and Greenhouse Gas Emissions in Rice Paddy Fields." *Journal of Cleaner Production* 349 (May 15, 2022): 131487. https://doi.org/10.1016/j.jclepro.2022.131487.

[7] Li, Jianling, et al. "Annual Greenhouse Gas Emissions from Rice Paddy with Different Water-Nitrogen Management Strategies in Central China." *Soil & Tillage Research*, vol. 235, 1 Jan. 2024, pp. 105906-105906, https://doi.org/10.1016/j.still.2023.105906. Accessed 10 Nov. 2023.

[8] Rola, Agnes, et al. "Challenges of Water Governance in the Philippines." Philippine Journal of Science, vol. 144, no. 2, 2015, pp. 197–208, philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol144no2/pdf/challenges_of_water_governance _in_the_Phils_FinalCopy_05_April_2016.pdf.

Reference lists to support descriptions in the PDD, if any.

Annex

Annex 1: Estimated emissions reductions for 2031-2034				
Year	Estimated Reference	Estimated Project	Estimated Emission	
	emissions (tCO2e)	Emissions (tCO2e)	Reductions (tCO2e)	
2031	478,621.53	269,938.02	208,683.52	
2032	478,621.53	269,938.02	208,683.52	
2033	478,621.53	269,938.02	208,683.52	
2034	478,621.53	269,938.02	208,683.52	
Total (tCO2e)			834,734.08	

Annex 2: Estimated emissions reductions for the entire project lifetime

Year	Estimated Reference	Estimated Project	Estimated Emission	
	emissions (tCO2e)	Emissions (tCO2e)	Reductions (tCO2e)	
2024	8,151.09	4,563.96	3,587.13	
2025	35,350.29	19,848.74	15,501.55	
2026	130,398.15	73,337.22	57,060.93	
2027	289,938.66	163,316.56	126,622.10	
2028	449,479.17	253,295.90	196,183.27	
2029	478,621.53	269,938.02	208,683.52	
2030	478,621.53	269,938.02	208,683.52	
2031	478,621.53	269,938.02	208,683.52	
2032	478,621.53	269,938.02	208,683.52	
2033	478,621.53	269,938.02	208,683.52	
2034	478,621.53	269,938.02	208,683.52	
Total (tCO2e)			1,403,397.68	

Revision history of PDD			
Version	Date	Contents revised	
1.0	21/05/2025	First Version	