JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Torm for submitting the proposed methodology	
Host Country	Republic of the Philippines
Name of the methodology proponents	Tokyo Carbon Management Ltd (TCM)
submitting this form	
Sectoral scope(s) to which the Proposed	3. Energy demand
Methodology applies	
Title of the proposed methodology, and	Energy Saving by Introduction Low Greenhouse
version number	Gas-Emitting Safe Drinking Water Production
	Systems in the Philippines, version 01.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information:
Date of completion	07/08/2024

History of the proposed methodology

Version	Date	Contents revised
01.0	31/07/2023	First edition

A. Title of the methodology

Energy Saving by Introduction Low Greenhouse Gas-Emitting Safe Drinking Water Production Systems in the Philippines, Version 01.0

B. Terms and definitions

Terms	Definitions
Point of Use (POU)	Devices treat only the water intended for direct consumption,
	typically at a single tap or limited number of taps.
Point of Entry (POE)	Devices are typically installed to treat all water entering a single
	home, business, school, or facility (USEPA, 2006).
Distribution network	It is a public service which is provided by government to people
	living within its jurisdiction, either directly or through an authorized
	party.
Water kiosk	It is a facility to treat water to be delivered or sold to final consumers
	in appropriate conditions of sealed storage and/or residual capacity
	of disinfection, in such a way as to prevent recontamination before
	the final consumption as drinking water.

C. Summary of the methodology

Items	Summary
GHG emission	The intention of the project activity involves the installation of low
reduction measures	greenhouse gas emitting safe drinking water purifiers (SDWPs) to
	provide clean drinking water to the households/communities/
	schools/institutions (hereafter "users"). For this reason, project
	activity aims at reducing the wood fuel consumption of traditional
	stove users by distributing water purifiers to households and/or
	schools and/or institutions.
Calculation of	The reference emission is calculated for each project water purifier
reference emissions	by using the following parameters:
	• Total quantity of water purified by the project
	• Fraction of functional appliances that are providing the safe

I				
	drinking water			
	• Fraction of the population served by the project activity for which			
	the common practice of water treatment is or would have been			
	water boiling			
	• Specific energy consumption required to boil one litre of water			
	· Proportions of reference fuel (NRB and/or fossil fuels) used in			
	the absence of the project activity			
	• Fraction of non-renewable fuel used in the absence of the project			
	activity			
	• Emission factor of the fuel substituted			
Calculation of project	The project emission is calculated for each project water purifier by			
emission	using the following parameters:			
	• Emissions from fossil fuel combustion			
	Emissions from electricity consumption			
Monitoring parameters	• Number of population who consumes the purified water serviced			
	by the project activity			
	• Quantity of purified water			
	· Fraction of functional appliances that are providing the safe			
	drinking water			
	• Usage time			
	Check for SDW public distribution network			
	• Quality of safe drinking water			
	• Date of commissioning of the project device			

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	This methodology comprises introduction of low greenhouse gas emitting
	water purification systems to provide safe drinking water (SDW). Water
	purification technologies that involve point-of use (POU) or point-of-entry
	(POE) treatment systems for residential or institutional applications such as
	systems installed at a school or a community centre, institutions are included.
	The examples include, but are not limited to, water filters (e.g. membrane,
	activated carbon, ceramic filters), solar energy powered ultraviolet (UV)
	disinfection devices, solar disinfection techniques, photocatalytic disinfection
	equipment, pasteurization appliances, chemical disinfection methods (e.g.
	chlorination), combined treatment approaches (e.g. flocculation plus

application of the project technology/equipment achieves compliance either with: (i) the Comprehensive Protection performance target as per "Evaluating household water treatment options: Health based targets and microbiological performance specifications" (WHO, 2011) and "International Scheme to Evaluate Household Water Treatment Technologies" (WHO, 2014); or (ii) an applicable national standard or guideline. Applicable national standard should be based on laboratory efficacy testing that, at a minimum, includes quantitative microbial measures of pre- and post-treatment challenge waters
with: (i) the Comprehensive Protection performance target as per "Evaluating household water treatment options: Health based targets and microbiological performance specifications" (WHO, 2011) and "International Scheme to Evaluate Household Water Treatment Technologies" (WHO, 2014); or (ii) an applicable national standard or guideline. Applicable national standard should
with: (i) the Comprehensive Protection performance target as per "Evaluating household water treatment options: Health based targets and microbiological performance specifications" (WHO, 2011) and "International Scheme to Evaluate Household Water Treatment Technologies" (WHO, 2014); or (ii) an
with: (i) the Comprehensive Protection performance target as per "Evaluating household water treatment options: Health based targets and microbiological performance specifications" (WHO, 2011) and "International Scheme to
with: (i) the Comprehensive Protection performance target as per "Evaluating household water treatment options: Health based targets and microbiological
with: (i) the Comprehensive Protection performance target as per "Evaluating
application of the project technology/equinment achieves compliance either
example nonneations nonn the national authority on health) that the
example notifications from the national authority on health) that the
network supplying SDW to the project boundary does not exist; It is demonstrated based on laboratory testing or official notifications (for
Prior to the implementation of the project activity, a public distribution
that water and well are not contaminated;
national and/or international standards and that measures are taken to ensure
that rehabilitation and/or construction of the wells complies with relevant
(e.g. chlorination) may be applied. Project proponents demonstrate ex ante
Soil filtration schemes (boreholes, wells) that include container disinfection
containers and hygiene training);
measures to prevent recontamination (e.g. disinfecting containers, sealing
water kiosk is using solar disinfection, project proponents need to implement
combined flocculant/disinfection powders and solar disinfection. ¹ In case the
water using one or more of the following technologies: chlorination,

¹ According to "A toolkit for monitoring and evaluating household water treatment and safe storage programmes" (WHO – 2012) – Annex A - Summary of HWTS methods, the use of these technologies can provide protection against recontamination.

	drinking water;
Criterion 7	It should be demonstrated that the proposed method for distribution of project
	devices including the method to avoid double counting of emission;
	reductions such as unique identifications of product and end-user locations
	(e.g. programme logo);
Criterion 8	It should be demonstrated that the proposed procedures prevent double
	counting of emission reductions, for example to avoid that project stove
	manufacturers, wholesale providers or others claim credit for emission
	reductions from the project devices.

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Esseil fast on the new generation for	CO ₂		
Fossil fuel and/or non-renewable biomass (NRB) consumption for	NO ₂		
boiling water	CH ₄		
Project emissions			
Emission sources	GHG types		
Fossil fuel combustion and electricity consumption for boiling water	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emissions are calculated for each reference water purifier by multiplying the quantity of purified water, the fraction of functional appliances providing the safe drinking water, fraction of the population served by the project activity which the common practice of water treatment is/would have been water boiling, specific energy consumption required to boil one litre of water, proportion of fuel type used in the absence of the project activity, fraction of non-renewable fuel in the absence of the project activity, and emission factor of fuel substituted.

It is assumed that in the absence of project activity, the reference scenario is the continued use of fossil fuel and/or non-renewable biomass (NRB) to boil drinking water as means of water purification. Since the efficiency of the water boiling systems being replaced are inversely proportional to the amount of reference emissions. Thus, the efficiency of the reference water boiling systems is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. 0.1 default value may be optionally used if the replaced system or the system that would have been used is a three-stone fire or a conventional system for woody biomass lacking improved combustion air supply mechanism and flue gas ventilation system that is without a grate as well as a chimney; for the rest of the systems using woody biomass 0.2 default value may be optionally used.
- 2. 0.5 default value may be used if the replaced system or the system that would have been used is a fossil fuel combusting system.
- 3. The efficiency of the water boiling system will use weighted average values if more than one type of system is encountered

F.2. Calculation of reference emissions

	$< X_{boil} \times SEC \qquad \qquad \text{Equation (1)}$
BL _{fuel} ,	$_i \times f_i \times EF_{projected fossil fuel,i} imes 10^{-9}$
=	Reference emissions during the period p (tCO ₂ e/p)
=	Total quantity of water purified by the project during the period p (L/p), calculated based on the following option:
	Option 1: Directly monitored
	Option 2: Indirectly monitored following the procedures described in Option below:
	Option 2.1:
	$QPW_p = \sum q_{i} \times t_p$ Equation (2)
	Where:
	- q_i : Capacity of the water purification device (L/hour) provided by the manufacturer
	- t_p : Usage time during the period p (hours/p)
	Option 2.2:
	$QPW_p = P_p \times \min(QWP_{pp}; 5.5) \times D_p$ Equation (3)
	Where:
	- P_p : Population who consumes the purified water
	=

		serviced by the project activity during the period p
		- QPW _{pp} : Average volume of drinking water per person
		per day (L/person/day) determined at the time of validation through a survey
		- D_p : Number of operating days during the period p
m	=	Fraction of functional appliances that are providing the SDW. Only project appliances that (i) use technologies that meet the technology standards and (ii) are operating or replaced by an equivalent in service appliance and (iii) deliver microbiologically safe drinking water, are counted for emission reductions
X _{boil}	=	Fraction of the population served by the project activity for which the common practice of water treatment is or would have been water boiling. It is determined ex ante through surveys
SEC	=	Specific energy consumption required to boil one litre of water (kJ/L), to be calculated according equation below:
		$SEC = [WH \times (T_f - T_i) + 0.01 \times Equation (4)]$ WHE]/ η_{wb}
		Where:
		- <i>WH</i> : Specific heat of water (kJ/L $^{\circ}$ C). Use a default value of 4.186 kJ/L $^{\circ}$ C
		- T_{f} : Final temperature (°C). Use a default value of 100 °C
		- T_i : Initial temperature of water (°C). Use annual average ambient temperature; or use a default value of 20°C
		- <i>WHE</i> : Latent heat of water evaporation (kJ/L). Use a default value of 2260 kJ/L. The latent heat required to boil one litre of water for five minutes is assumed to be equivalent to latent heat for the evaporation of 1% of the water volume (WHO recommends a minimum duration of five minutes of water boiling)
		- η_{wb} : Efficiency of the water boiling systems being replaced, estimated ex ante.
BL _{fuel,i}	=	Proportions of reference fuel type i (NRB and/or fossil fuels) used in the absence of the project activity (fraction)
f _i	=	Fraction of non-renewable fuel type i used in the absence of the project activity during the period p . For biomass, it is the fraction of woody biomass that can be established as non-renewable biomass (f_{NRB}). If the reference fuel is

		fossil fuel, the value to be applied is 1.	
$EF_{projected}$ fossil fuel,i	=	Emission factor of the fuel type i substituted (tCO ₂ e/TJ)	
0.95	=	Discount factor to account for potential use of biomass by non- project households/communities/schools/institutions.	

G. Calculation of project emissions

If the operation of the project water purification system involves consumption of fossil fuels and/or electricity, CO₂ emissions from on-site consumption of fossil fuels and electricity due to the project activity will be accounted for as project emissions.

$$PE_p = PE_{FF,p} + PE_{EC,p}$$
 Equation (5)

Where:

 PE_p = Project emissions during the period p (tCO₂e/p)

PE_{FF,p}

combustion in process are calculated based on the quantity of fuels combusted and the CO_2 emission coefficient of those fuels

= Emissions from fossil fuel combustion. CO2 emissions from fossil fuel

$$PE_{FF,p} = \sum_{i} FC_{i,p} \times COEF_{i}$$
 Equation (6)

- $FC_{i,p}$: the quantity of fuel type *i* combusted during the period *p* (mass or volume unit/p)

- **COEF**_{*i*}: the CO₂ emission coefficient of fuel type *i* (tCO₂/mass or volume unit)

- *i*: the fuel types combusted in process during the period *p*

 $PE_{EC,p}$ = Emissions from electricity consumption.

$$PE_{EC,p} = \sum_{j} EC_{PJ,j,p} \times EF_{EF,j,p} \times (1 + TDL_j)$$
 Equation (7)

- $EC_{PJ,j,p}$: Quantity of electricity consumed by the project electricity consumption source *j* during the period *p* (MWh/p)

- $EF_{EF,j}$: Emission factor for electricity generation for source *j* (tCO₂/MWh)

- *TDL_j*: Average technical transmission and distribution losses for providing electricity to source *j*

Equation (8)

- j: Sources of electricity consumption in the project during the period p

H. Calculation of emissions reductions

		$ER_p = RE_p - PE_p$ Equa
Where:		
ER_p	=	Emission reductions during the period p (tCO ₂ e/p)
REp	=	Reference emissions during the period p (tCO ₂ e/p

D D

-

PE_{p}	=	Project	emissions	during t	he period	р (tCO ₂ e/p)
p		110,000	emissions	aanng t	ne penoa	Рι	c c c c p	1

n n

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
QPW _{pp}	Average volume of	Estimated through ex ante survey or
	drinking water per	official data, or peer reviewed
	person per day	literature or local expert opinion.
		Alternatively, a default value of 3
		litres per person per day ² can be
		used. The maximum value of 5.5
		litres per person per day are not to
		be exceeded.
LS	Life span of water	Manufacturer's specifications. In
	treatment technologies	cases where the life span of the
		water treatment technologies of the
		project activity is shorter than the
		period mentioned in the Bilateral
		Document, documented measures
		are in place to ensure that end users
		have access to replacement
		purification systems of comparable
		quality.
η_{wb}	Efficiency of the water	Use one of the options below:

² Based on WHO recommendations (Technical Notes on Drinking Water, Sanitation and Hygiene in Emergencies. Table 9.1: Simplified table of water requirements for survival (per person).

	boiling systems being	(a) The efficiency of the water
	replaced	boiling system is established using
	-	representative sampling methods or
		based on referenced literature
		values (fraction), use weighted
		average values if more than one
		type of system is encountered;
		(b) 0.10 default value may be
		optionally used if the replaced
		system or the system that would
		have been used is a three-stone fire
		or a conventional system for woody
		biomass lacking improved
		combustion air supply mechanism
		and flue gas ventilation system that
		is without a grate as well as a
		chimney; for the rest of the systems
		using woody biomass 0.2 default
		value may be optionally used;
		(c) 0.5 default value may be used if
		the replaced system or the system
		that would have been used is a fossil
		fuel combusting system.
BL _{fuel,i}	Proportions of reference	Estimated ex ante through a survey
	fuel type <i>i</i> (NRB and	or official data or peer reviewed
	fossil fuel)	literature or local expert opinion.
f _i	Fraction of non-	If the reference fuel is fossil fuel use
	renewable fuel type <i>i</i>	a default value of 1.0.
		Other case, the parameter is
		calculated by third party or based
		on national data.
EF projected fossil fuel,i	Emission factor of the	If the fuel displaced is NRB, this
	fuel(s) type <i>i</i> substituted	parameter can be sourced from
		table below:
		Emission factor of fossil fuels
		projected to substitute non-
		renewable woody biomass by

		similar consumers (tCO2e/TJ)
		Middle East 63.9
		and North
		Africa
		East Asia and 85.7
		the Pacific
		Europe and 57.8
		Central Asia
		Latin America 68.6
		and the
		Caribbean
		South Asia 64.4
		Sub-Saharan 73.2
		Africa
X _{boil}	Fraction of the	Established ex ante through survey.
	population serviced by	
	the project activity for	
	which the common	
	practice of water purification is or would	
	have been water boiling	
	Capacity of the water	Manufacturer's specification.
Y 1	purification device	Wallander 5 Specification.
0.95	Discount factor to	Based on page 09 of UNFCCC
	account for potential use	approved methodology AMS-
	of biomass by non-	III.AV version 08.0.
	project households/	
	communities	
COEF _i	The CO ₂ emission	The parameter is calculated using
	coefficient of fuel type <i>i</i>	the latest version of the "CDM tool
		03: Tool to calculate project or
		leakage CO ₂ emission from fossil
		fuel combustion"
TDL _j	Average technical	Applied the latest version of the
	transmission and	"CDM Tool 05: Baseline, project
	distribution losses for	and/or leakage emissions from

	providing electricity to	electricity consumption and
	source j	monitoring of electricity
	bouree j	generation", choose one value of
		the following case:
		- In case of electricity consumption
		from off-grid captive power plants,
		assume $TDL_j = 0$ as a
		simplification.
		- In case of electricity consumption
		from the grid or both the grid and
		captive power plant(s), use as
		default values of 20%.
EF _{EF,j}	Emission factor for	The most recent value available at
	electricity generation for	the time of validation is applied and
	source j	fixed for the monitoring period
		thereafter.
		The data is sourced from "National
		Grid Emission Factor of the
		Philippines".
WH	Specific heat of water.	Applied the CDM Methodology
	Use a default value of	AMS-III.AV.
	4.186 kJ/L°C	
T_f	Final temperature. Use a	Boiling point of water at standard
	default value of 100°C	conditions.
T _i	Initial temperature of	Ambient temperature data must be
	water. Use a default	from globally accepted data
	value of 20°C	sources, for example data published
		by the National Aeronautics and
		Space Administration (NASA) or the National Renewable Energy
		Laboratory (NREL). Data can be
		used only if they are for a location
		that can be demonstrated to be
		representative of the project
		location.
WHE	Latent heat of water	Use a default value. The latent heat
WHE	Latent heat of water evaporation	Use a default value. The latent heat required to boil one litre of water

for five minutes is assumed to be
equivalent to latent heat for the
evaporation of 1% of the water
volume (WHO recommends a
minimum duration of five minutes
of water boiling).