JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of the Philippines	
Name of the methodology proponents	Tokyo Carbon Management Ltd (TCM)	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and Energy Saving by Introduction of High		
version number	Firewood Cookstove to Replace Traditional	
	Cookstove in the Philippines, Version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information:	
Date of completion	07/08/2024	

History of the proposed methodology

Version	Date	Contents revised	
01.0	31/07/2023	First Edition	

A. Title of the methodology

Energy Saving by Introduction of High Firewood Efficiency Cookstove to Replace Traditional Cookstove in the Philippines, Version 01.0

B. Terms and definitions

Terms	Definitions	
Batch	Batch is the population of the device of the same type commissioned	
	during a certain period of time (e.g. week or month) in a certain	
	calendar year. To establish the date of commissioning, the project	
	participant may opt to group the devices in "batches" and the latest	
	date of commissioning of a device within the batch is used as the	
	date of commissioning for the entire batch.	
Reference cookstove	The cookstove style in which three-stones are placed on the ground	
	using firewood (not charcoal), or a cookstove with no improved	
	combustion air supply or flue gas ventilation.	

C. Summary of the methodology

Items	Summary		
GHG emission reduction	The proposed project activity aims at reducing the use of and		
measures	demand for non-renewable biomass that would have been used		
	for cooking by distributing improved cookstove (ICS, project		
	cookstove) to households and/or communities.		
Calculation of reference	Reference emissions are calculated for each reference		
reductions	cookstove by using the following parameters:		
	• Quantity of woody biomass used by reference cookstove		
	• Fraction of woody biomass saved by the project activity		
	that can be established as non-renewable biomass		
	• Net calorific value of the non-renewable woody biomass		
	• Emission factor of fossil fuel projected to be used to		
	substitute non-renewable woody biomass		
	• Adjustment to account for any continued use of		

	reference cookstove		
	• Discount factor to account for the potential source of		
	emissions which may occur due to the use of biomass by		
	non-project households/communities		
Calculation of project	The project emissions are calculated for each project cookstove		
reductions	by using the following parameters:		
	• Quantity of woody biomass used by project cookstove		
	• Fraction of woody biomass that can be established as		
	non-renewable biomass		
	• Net calorific value of the non-renewable woody		
	biomass that is used by project cookstove		
	• Emission factor of fossil fuel projected to be used to		
	substitute non-renewable woody biomass		
	• Adjustment to account for any continued use of reference		
	cookstove		
Monitoring parameters	• Number of project cookstove commissioned		
	Proportion of commissioned project cookstove remain		
	operating		
	• Adjustment to account for any continued use of		
	reference cookstove		
	• Quantity of woody biomass is used per project		
	cookstove (Option 2)		
	• Number of project cookstoves distributed per household		
	• Date of commissioning of batch j		
	• Date of commissioning of project device		
	• The operating lifetime of project device		
	• Operation years of the project cookstove		

-		• . •
D.	Eligihility	criteria
~.		01100110

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project distributes cookstoves to households or community (ies) where	
	the pre-project cookstove is three-stone fire.	
Criterion 2	The project cookstoves exclusively use wood fuel.	
Criterion 3	The methodology is applicable to the introduction of single pot or multi pot	
	portable or in-situ cookstoves with rated efficiency of at least 25 per cent. The	
	options for testing and certification of rated efficiency as well as supporting	

	documentation (e.g. certificate issued by third party or test results) are				
	available at the time of validation.				
Criterion 4	Non-renewable biomass has been used in the project region since 31				
	December 1989, using survey methods or referring to published literature,				
	official reports or statistics.				
Criterion 5	Each project cookstove is given an identifiable serial number to avoid double				
	counting of emission reductions.				
Criterion 6	The project has procedures to prevent double counting of emission				
	reductions, for example to avoid that project stove manufacturers, wholesale				
	providers or others claim credit for emission reductions from the project				
	devices.				

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
	CO_2		
Wood fuel consumption by reference cookstove	N ₂ O		
	CH_4		
Project emissions			
Emission sources	GHG types		
	CO_2		
Wood fuel consumption by project cookstove	N_2O		
	CH ₄		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emissions are calculated for each reference cookstove by multiplying the quantity of woody biomass that is used by the reference cookstove, the fraction of non-renewable biomass, net calorific value of the non-renewable biomass, the emission factor of fossil fuel projected to substitute non-renewable woody biomass, adjustment to account for any continued use of reference cookstove and the conservative emission factor.

It is assumed that in the absence of project activity, the reference scenario is the continued use

of non-renewable biomass in the reference cookstove by the target population to meet the similar thermal energy needs as those provided by the project cookstove.

The actual reference scenario used in the calculation is the use of fossil fuel. Since nonrenewable biomass has higher carbon intensity than the fossil fuel, this calculation leads to the conservative emission reductions. The quantity of biomass used in reference cookstove for target customer will be determined in each project activity.

The efficiency of reference cookstove is conservatively set *ex ante* at 0.15 so as to ensure net emission reductions.

F.2. Calculation of reference emissions

	R	Ep	$=\sum_{i}\sum_{j}RE_{p,i,j}$	Equation (1)
Where:				
i	: Indices	for	the type of project cookstove	
j	: Indices	for	batch of project cookstove of type <i>i</i>	
REp	: Referen	ce	emission during the period p (tCO ₂ e/p)	
RE _{p,i.j}	: Referen	ce	emission by reference cookstove for the projec	t cookstove of type
	<i>i</i> and ba	ıtch	<i>j</i> during the period p (tCO ₂ e/p)	
<i>RE</i> _{p,i,j} =	$= B_{ref,p,i,j} \times f \times N_{p,i}$	NRI "j×	$p_{B} \times NCV_{biomass} \times EF_{projected fossil fuel}$ $n_{p,i,j} \times \mu_p \times 0.95$	Equation (2)
Where:				
B	ref,p,i,j	:	Quantity of woody biomass that is used per n	reference cookstove
			before replaced by the project cookstove of	f type i and batch j
			during the period p (tonne/p)	
j	f _{NRB}	:	Fraction of woody biomass that can be e	established as non-
			renewable biomass (fraction)	
NCI	biomass	:	Net calorific value of the non-renewable wo	oody biomass that is
			substituted (IPCC default for wood fuel, 0.0	156 TJ/tonne, based
			on the gross weight of the wood that is "air-	dried")
EF projec	ted fossil fuel	:	Emission factor of fossil fuels projected to b	be used to substitute
			non-renewable woody biomass by s	similar consumers
			(tCO ₂ e/TJ)	
1	$N_{p,i,j}$:	Number of project cookstoves of typ	e <i>i</i> and batch <i>j</i>
			commissioned during the period p (number)	
1	$n_{p,i,j}$:	Proportion of commissioned project device	of type <i>i</i> and batch <i>j</i>

		during the period p	
μ_p		: Adjustment to account	for any continued use of reference
		cookstove during the peri	od <i>p</i>
0.9	5	: Discount factor to account	nt for the potential source of leakage
		due to the use of bio	omass by non-project households/
		communities	
B _{ref.p,i,i} due	to imp	lementation of thermal reference co	ookstove is estimated as per any of the
following opti	ions:		
Option 1: B_r	ef,p,i,j	is estimated via $B_{ref,HH}$. There	are 2 cases below:
In case more t	han on	e project cookstove is distributed in	n households:
	Brej	$f_{f,p,i,j} = B_{ref,p,HH} \div N_{d,HH}$	Equation (3)
	B _{re}	$B_{f,HH} = B_{ref,p.p} \times N_{p,HH}$	Equation (4)
In case only o	ne proj	ect cookstove per household is dis	tributed:
		$B \dots - B \dots$	Equation (5)
		Dref,p,i,j – Dref,HH	Equation (3)
Where:			
B _{ref,p,HH}	:	Quantity of woody biomass that w	vould have been used in the household
		in the absence of the project	activity to generate thermal energy
		equivalent to that provided by th	e project devices during the period p
		(tonne/household/p).	
N _{d,HH}	:	Number of project devices per ho	ousehold (number)
B _{ref,p.p}	:	Quantity of woody biomass that	would have been used per person in
		the household in the absence of the	he project activity to generate thermal
		energy equivalent to that provid	ed by the project devices during the
		period p (tonne/person/p). A de	efault value for the average annual
		consumption of woody biomass i	s 0.4 tonne/person/year may be used ¹
$N_{p,HH}$:	Average number of person	per household prior to project
		implementation (number)	
		. ,	

Option 2:

$$B_{ref,p,i,j} = B_{pc,p,i,j} \times \frac{\eta_{pc,p,i,j}}{\eta_{ref}}$$

Equation (6)

Where:

 $B_{pc,p,i,j}$: Quantity of woody biomass used by project cookstove in tonnes per device of type *i* and batch *j* during the period *p* (tonne/p)

¹ <u>https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-33-v2.0.pdf</u>

$\eta_{pc,p,i,j}$: Efficient	by of the project cookstove i and be	batch j during the period p	
	(fraction). Alternatively, efficiency may be de	termined using Equation (6)	
η_{ref}	: Efficienc	Efficiency of the old cookstove being replaced by project cookstove		
	(fraction). A default value for this parameter us	sed for cooking and/or water	
	boiling applications is 0.15^2 .			
$\eta_{pc,p,i,j} = \eta_{pc,1,i,j} \times (0.99^{y-1}) \times 0.94$ Equation (7)				
$\eta_{pc,1,i,j}$:	Efficiency of the project cookstove	type <i>i</i> and batch <i>j</i> at the start	
		of project activity (fraction)		
0.99	:	Discount factor to account for	efficiency loss of project	
		cookstove per year of operation (fr	raction)	
0.94	:	Adjustment factor to account for u	incertainty related to project	
		cookstove efficiency test.		

G. Calculation of project emissions

		$PE_p = \sum_{k=1}^{n}$	$\sum_{i} \sum_{j} PE_{p,i,j} \qquad \qquad$	quation (8)
i	:	Indices for	or type of project cookstove	
j	:	Indices for batch of project cookstove of type <i>i</i>		
PEp	:	Project e	mission during the period p (tCO ₂ e/p)	
$PE_{p,i,j}$:	Project emission by project cookstove of type <i>i</i> and batch <i>j</i> during the period p (tCO ₂ e/p)		
$PE_{p,i,j} = B_{pc,p,i,j} \times$	f_{NR}	$_{B} \times NCV_{bic}$	omass $ imes \textit{EF}_{projected fossil fuel} imes \textit{N}_{p,i,j} imes \textit{n}_{p,i,j} imes \mu_p$	Equation (9)
Where:				
$B_{pc,p,i,j}$:	Quantity of woody biomass that is us cookstove of type <i>i</i> and batch <i>j</i> during the pe	ed per project priod p (tonne/p)
f _{NRB}		:	Fraction of woody biomass that can be esta renewable biomass	blished as non-
NCV bioma	iss	:	Net calorific value of the non-renewable woo is used by project cookstove (TJ/tonne)	ody biomass that
EF _{projected} fos	ssil f	uel [:]	Emission factor of fossil fuels projected substitute non-renewable woody bioma consumers (tCO ₂ e/TJ)	to be used to ss by similar
$N_{p,i,j}$:	Number of project cookstoves of type	<i>i</i> and batch <i>j</i>

² <u>https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-33-v2.0.pdf</u>

	commissioned during the period p
$n_{p,i,j}$: Proportion of commissioned project cookstoves of type <i>i</i> and batch <i>j</i> that remain operating during the period <i>p</i>
μ_p	: Adjustment to account for any continued use of reference cookstove during the period <i>p</i> .

 $B_{pc,p,i,j}$ implementation of thermal project device is estimated as per any of the following options

Option 1:

$$B_{pc,p,i,j} = B_{ref,p,i,j} \times \frac{\eta_{ref}}{\eta_{pc,p,i,j}}$$
Equation (10)

Where:

- $B_{ref,p,i,j}$: Quantity of woody biomass that is used per reference cookstove before replaced by the project cookstove of type *i* and batch *j* during the period *p* (tonne/p)
- $\eta_{pc,p,i,j}$: Efficiency of the project cookstove *i* and batch *j* during the period *p* (fraction). Alternatively, efficiency may be determined using Equation (7)
 - η_{ref} : Efficiency of the old cookstove being replaced by project cookstove (fraction). A default value for this parameter used for cooking and/or water boiling applications is 0.15^3 .

Option 2: $B_{pc,p,i,j}$ is estimated via sample survey of end-user or direct measurement at each end-user locations.

H. Calculation of emissions reductions

		$ER_p = RE_p - PE_p$		Equation (11)
Where:				
	ERp	=	Emission reductions during the period p (tCO ₂ e/p)	
	REp	=	Reference reductions during the period p (tCO ₂ e/p)	
	PEp	=	Project reductions during the period p (tCO ₂ e/p)	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

³ <u>https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-33-v2.0.pdf</u>

Parameter	Description of data	Source
B _{ref,p,p}	Quantity of woody biomass	Using the following options:
	that would have been used	a) Historical data or a sample survey
	per person in the household in	conducted as per the latest version
	the absence of the project	of the "Standard: Sampling and
	activity to generate useful	surveys for CDM project activities
	thermal energy equivalent to	and programme of activities";
	that provided by the project	b) A default value for the average
	device during the period p	annual consumption of woody
	(tonne/person/p)	biomass is 0.4 tonnes/person/year
		may be used ⁴
N _{p,HH}	Average number of person	Established based on records of
	per household prior to project	households served by the project
	implementation (number)	
B _{ref,p,HH}	Quantity of woody biomass	Using one of the following options:
	that would have been used in	1. $\boldsymbol{B}_{ref,p,HH} = \boldsymbol{B}_{ref,p,p} \times \boldsymbol{N}_{p,HH}$
	the household in the absence	2. Based on the historical data or a
	of the project activity to	sample survey conducted as per the
	generate thermal energy	latest version of "sampling and
	equivalent to that provided by	surveys for CDM project activities
	the project devices during the	and programme of activities". If the
	period p (tonne/household/p)	monitoring period is shorter or
		longer than one year, the result may
		be extrapolated for the monitoring
		period.
$B_{ref,p,i,j}$	Quantity of woody biomass	Calculated.
	that is used per reference	If it is estimated via B _{ref,p,HH}
	cookstove before replaced by	(Option 1), using one of the
	the project cookstove of type	following case:
	<i>i</i> and batch <i>j</i> during the period	1. In case more than one project
	p (tonne/p)	cookstove is distributed in
		households:
		$\boldsymbol{B}_{ref,p,i,j} = \boldsymbol{B}_{ref,p,HH} \div \boldsymbol{N}_{d,HH}$
		2. In case only one project

⁴ <u>https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-33-v2.0.pdf</u>

		cookstove per household is
		distributed:
		$\boldsymbol{B}_{ref,p,i,j} = \boldsymbol{B}_{ref,p,HH}$
η_{ref}	Efficiency of reference	Default value as per applied
	cookstove.	methodology AMS-II.G, Version
	Default value: 0.15	13.0 and CDM tool 33, version 02.0
$\eta_{nc,1,i,i}$	Efficiency of the project	Manufacturer's specification
E - 7 7-74	cookstove type i and batch j	-
	at the start of project activity	
	(fraction)	
EF projected fossil fuel	Emission factor of fossil fuels	For the emission factor of fossil
	projected to be used to	fuels projected to be used to
	substitute non-renewable	substitute non-renewable woody
	woody biomass by similar	biomass by similar consumers,
	consumers (tCO ₂ e/TJ)	either the default regional values in
	Default value for the	table below:
	Philippines: 85.7 tCO ₂ e/TJ	Emission factor of fossil fuels
		projected to be used to
		substitute non-renewable
		woody biomass by similar
		consumers (tCO ₂ e/TJ)
		Middle East 63.9
		and North
		Africa
		East Asia and 85.7
		the Pacific
		Europe and 57.8
		Central Asia
		Latin America68.6
		and the
		Caribbean
		South Asia 64.4
		Sub-Saharan73.2
		Africa
		AfricaRefer to Appendix 1 for the

		primarily based on the "developing
		regions" classification used by the
		United Nations Development
		Programme but tailored to the
		purpose of this CDM methodology.
NCV biomass	Net calorific value of the non-	Table 1.2, chapter 1, volume 2 of
	renewable woody biomass	2006 IPCC Guidelines for National
	that is substituted by project	GHG Inventories. Default value is
	cookstove. A default for	applied.
	wood fuel is 0.0156 TJ/tonne.	
f _{NRB}	Fraction of woody biomass	Calculated by an independent third
	saved by the project activity	party or based on national data.
	that can be established as	
	non-renewable biomass	