JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of the Philippines			
Name of the methodology proponents	Institute for Global Environmental Strategies			
submitting this form				
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable-/non-			
Methodology applies	renewable sources)			
Title of the proposed methodology, and	Electricity generation by installation of run-of-			
version number	river hydro power generation system(s) in the			
	Philippines, Version 01.0			
List of documents to be attached to this form	The attached draft JCM-PDD:			
(please check):	Additional information			
	1) Explanatory note about additional			
	information on calculation the emission factors			
	of the Philippines for the JCM			
Date of completion	23/10/2019			

History of the proposed methodology

Version	Date	Contents revised	
01.0	23/10/2019	First edition	

A. Title of the methodology

Electricity generation by installation of run-of-river hydro power generation system(s) in the Philippines, Version 01.0

B. Terms and definitions

Terms Definitions		Definitions	
Run-of-river	hydro	power	A system of power generation that uses water running in a
generation sys	tem		river or a waterway directly into power generation unit
			without storing water in a dam ¹ .

C. Summary of the methodology

Items	Summary
GHG emission reduction	Displacement of grid electricity and/or captive electricity by
measures	installation and operation of run-of-river hydro power
	generation system(s).
Calculation of reference	Reference emissions are calculated on the basis of the
emissions	electricity output of the run-of-river hydro power generation
	system(s) multiplied by the conservative emission factor.
Calculation of project	Project emissions are the emissions from the run-of-river
emissions	hydro power generation system(s), which are assumed to be
	zero.
Monitoring parameters	The quantity of the electricity generated by the project run-
	of-river hydro power generation system(s).

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria. Criterion 1 The project installs a run-of-river hydro power generation system(s).

E. Emission Sources and GHG types

 $^{^1\,}$ A dam is defined as a structure built across a river with a height of 15m or more from its foundation.

Reference emissions		
Emission sources	GHG types	
Consumption of grid electricity and/or captive electricity	CO_2	
Project emissions		
Emission sources	GHG types	
Generation of electricity from run-of-river hydro power generation	N/A	
system(s)		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The default emission factor is set in a conservative manner for the Philippines regional grids: Luzon-Visayas and Mindanao systems.

The emission factor is calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run (LCMR) resources for each regional grid in the Philippines during 2015-2017 and refers to the conservative emission factor of each fossil fuel power plant in order to secure net emission reductions.

The conservative emission factor of each plant is calculated to be $0.826 \text{ tCO}_2/\text{MWh}$ for coalfired power plant and $0.326 \text{ tCO}_2/\text{MWh}$ for gas-fired power plant based on the survey on heat efficiency of power plant in the Philippines. The emission factor for diesel power plant is calculated to be $0.533 \text{ tCO}_2/\text{MWh}$ based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case the run-of-river hydro power generation system(s) in a proposed project activity is directly connected to a regional grid or connected to a regional grid via an internal grid not connecting to a captive power generator (Case 1), the value of operating margin including LCMR resources, using the best heat efficiency among currently operational plants in the Philippines in calculating emission factors of fossil fuel power plants, are applied. The emission factors to be applied are set as "Emission factor for Case 1 (tCO₂/MWh)" in Section I. below.

In case the run-of-river hydro power generation system(s) in a proposed project activity is connected to an internal grid connecting to both a regional grid and a captive power generator (Case 2), the lower value between emission factors of "Emission factor for Case 1

(tCO₂/MWh)" shown in Section I below and the conservative emission factor of diesel-fired power plant of 0.533 tCO₂/MWh is applied. The emission factors to be applied are set as "Emission factor for Case 2 (tCO₂/MWh)" in Section I. below.

In the case that the run-of-river hydro power generation system(s) in a proposed project activity is only connected to an internal grid connecting to a captive power generator (Case 3), the emission factor of a diesel generator calculated by applying the most efficient heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel generator is applied, which is set as 0.533 tCO₂/MWh.

The emission factors for each case are shown in Section I.

F.2. Calculation of reference emissions

$$\begin{split} & \text{RE}_{\text{p}} = \sum_{i} \left(\text{EG}_{i,p} \text{ x EF}_{\text{RE},i} \right) \\ & \text{RE}_{\text{p}} \quad : \text{Reference emissions during the period } p \text{ [tCO}_2/\text{p]} \\ & \text{EG}_{i,p} \quad : \text{ Quantity of electricity generated by the project run-of-river hydro power generation system } i \text{ during period } p \text{ [MWh/p]} \\ & \text{EF}_{\text{RE},i} \quad : \text{Reference CO}_2 \text{ emission factor for the project run-of-river hydro power generation system } i \text{ [tCO}_2/\text{MWh]} \end{split}$$

G. Calculation of project emissions

$$PE_p = 0$$

 PE_p : Project emissions during period p [tCO₂/p]

H. Calculation of emissions reductions

 $ER_{p} = RE_{p} - PE_{p}$ $= RE_{p}$

 ER_p : Emission reductions during period p [tCO2/p] RE_p : Reference emissions during period p [tCO2/p] PE_p : Project emissions during period p [tCO2/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{RE,i}	The reference CO ₂ emission factor for the project	Additional information
	run-of-river hydro power generation system <i>i</i> .	The default emission
	The value for EE is selected from the emission	factor is obtained from a
	The value for Er $_{RE,1}$ is selected from the emission factor based on the rangional grid (EE $_{re}$) or based	study of electricity
	on a captive discal power generator (EFra.) in the	systems in the
	following manner:	Philippines and the most
		efficient diesel power
	In case the run-of-river hydro power generation	generator (a default
	system(s) in a proposed project activity is	value of 49% heat
	connected to a regional grid including through	efficiency is above the
	internal grid which is not connected to a captive	value of the world's
	power generator (Case 1), $EF_{RE,grid}$ is set as follows:	leading diesel
		generator).
	Emission factor for Case 1 (tCO ₂ /MWh)	
	Regional grid name: Emission factor for Case 1:	The default value is
	Mindanao 0.468 tCO ₂ /MWh	revised if deemed
		necessary by the JC.
	In case the run-of-river hydro power generation	
	system(s) in a proposed project activity is	
	connected to an internal grid connected to both a	
	regional grid and a captive power generator (Case	
	2), EF _{RE,grid} is set as follows:	
	Emission factor for Case 2 (tCO ₂ /MWh)	
	Regional grid name:Emission factor for Case 1:Luzon-Visayas0.507 tCO2/MWh	
	Mindanao 0.468 tCO ₂ /MWh	
	In case the run-of-river hydro power generation	
	in case the run-or-river nyuro power generation	

system(s) in a proposed project activity is	
connected to an internal grid which is not	
connected to the regional grid, and only connected	
to a captive power generator (Case 3), $EF_{RE,cap}$,	
0.533 tCO ₂ /MWh is applied.	