JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of Maldives	
Name of the methodology proponents	Pacific Consultants Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	d 1. Energy industries (renewable-/non-renewable	
Methodology applies	sources)	
Title of the proposed methodology, and	Displacement of Grid and Captive Genset	
version number	Electricity by Solar PV System, Ver 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	06/03/2015	

History of the proposed methodology

Version	Date	Contents revised
01.0	06/03/2015	First Edition

A. Title of the methodology

Displacement of Grid and Captive Genset Electricity by Solar PV System, Ver 01.0

B. Terms and definitions

Terms	Definitions
Solar photovoltaic (PV) system	An electricity generation system which converts sunlight into
	electricity by the use of photovoltaic (PV) modules. The
	system also includes ancillary equipment such as inverters
	required to change the electrical current from direct current
	(DC) to alternating current (AC).

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Displacement of grid electricity and/or captive electricity using	
measures	diesel fuel as a power source by installation and operation of the	
	solar PV system(s)	
Calculation of reference Reference emissions are calculated on the basis of the A		
emissions	output of the solar PV system(s) multiplied by the conservative	
	emission factor of the grid and captive electricity.	
Calculation of project Project emissions are the emissions from the solar PV syste		
<i>emissions</i> which are assumed to be zero.		
Monitoring parameters	The quantity of the electricity generated by the project solar PV	
	system	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs solar PV system(s).	
Criterion 2	The solar PV system is connected to the internal power grid of the project site	
Criterion 2	and/or to the grid for displacing grid electricity and/or captive electricity at the	

	project site.	
	The PV modules have obtained a certification of design qualifications (IEC	
Criterion 3	61215, IEC 61646 or IEC 62108) and safety qualification (IEC 61730-1 and IEC	
	61730-2), and have fulfilled the requirements of IEC 61701.	
Criterian 4	The equipment to monitor output power of the solar PV system and irradiance is	
Criterion 4	installed at the project site.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Consumption of grid electricity and/or captive electricity	CO ₂	
Project emissions		
Emission sources	GHG types	
Generation of electricity from solar PV system(s)	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Almost all electricity in the Maldives is generated by diesel. Being an island country, almost all the islands generated its own electricity and all grids in the Maldives are isolated. Considering that power from other sources such as solar PV is very limited and is negligible, net emission reductions are ensured as follows.

It is assumed that solar PV systems installed in the Maldives will replace grid electricity and/or captive electricity generated by the existing diesel generators whose power generation efficiency is estimated to be around 35.4% in Male, which leads to the CO_2 emission factor of 0.739 t CO_2 /MWh.

However, applying such emission factor derived from the existing diesel generators does not achieve net emission reductions. Therefore, the power generation efficiency of 49%, which has not been achieved yet by the world's leading diesel generators, is employed in this methodology to ensure net emission reductions. The emission factor of grid and captive electricity is set to $0.533 \text{ tCO}_2/\text{MWh}$ based on the power generation efficiency of 49%.

F.2. Calculation of reference emissions

$$\begin{split} & \operatorname{RE}_{p} = \sum_{i} \operatorname{EG}_{i,p} \times \operatorname{EF}_{RE} \\ & \operatorname{RE}_{p} \quad : \operatorname{Reference\ emissions\ during\ the\ period\ p\ [tCO_{2}/p]} \\ & \operatorname{EG}_{i,p} \quad : \operatorname{The\ quantity\ of\ the\ electricity\ generated\ by\ the\ project\ solar\ PV\ system\ i\ during\ the\ period\ p\ [MWh/p]} \\ & \operatorname{EF}_{RE} \quad : \operatorname{The\ reference\ CO_{2}\ emission\ factor\ of\ grid\ and\ captive\ electricity\ [tCO_{2}/MWh]} \end{split}$$

G. Calculation of project emissions

 $PE_p = 0$

$$PE_p$$
 : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

$$\begin{split} ER_p &= RE_p \quad \text{-} \quad PE_p \\ &= RE_p \end{split}$$

 ER_p : Emission reductions during the period p [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period *p* [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{RE}	The reference CO ₂ emission factor of grid and	Additional information
	captive electricity, calculated based on the	The default emission factor is
	power generation efficiency of 49% using	derived from the result of the

diesel fuel as the power source.	survey on the new
The default value for EF_{RE} is set to be 0.533	high-efficient engines using
tCO ₂ /MWh.	diesel fuel as a power source.
*The efficiency of the most efficient diesel	The default value should be
engine is close to but below 49%.	revised if necessary from the
	survey result which is
	conducted by the JC or project
	participants every three years.