JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of Maldives	
Name of the methodology proponents	Nippon Koei Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable / non-	
Methodology applies	renewable sources)	
Title of the proposed methodology, and	I Installation of Energy Management System	
version number and Battery Energy Storage System		
	BESS) with Solar PV System, Ver 01.0	
List of documents to be attached to this form The attached draft JCM-PDD:		
(please check):	Additional information	
Date of completion	23/06/2020	

History of the proposed methodology

Version	Date	Contents revised
01.0	23/06/2020	First edition

A. Title of the methodology

Installation of Energy Management System and Battery Energy Storage System (EMS-BESS) with Solar PV System, Ver 01.0

B. Terms and definitions

Terms	Definitions	
Solar photovoltaic (PV) system	An electricity generation system which converts sunlight	
	into electricity by the use of photovoltaic (PV) modules.	
	The system also includes ancillary equipment such as	
	inverters required to change the electrical current from	
	direct current (DC) to alternating current (AC).	
Energy Management System	The EMS is a system composed of server and software	
(EMS)	which can forecast the electricity load and PV generation	
	and to conduct Economic Load Dispatching Control by	
	controlling the thermal power such as diesel generator(s)	
	(DG) and Battery Energy Storage System (BESS) for	
	efficient system operation.	
Battery Energy Storage System	The BESS is a system consisted of power converter(s) and	
(BESS)	connected group of battery cell which charges and	
	discharges itself by converting electrical energy into	
	chemical energy. The BESS is controlled by EMS for	
	efficient charging and discharging.	
Diesel Generator (DG)	The DG is an electricity generator which uses diesel oil.	
	Most of the electricity in Maldives is generated by DG. The	
	efficiency of the DG is high in 80-100% load and decreases	
	in the lower load range.	

C. Summary of the methodology

Items			Summary
GHG	emission	reduction	Displacement of grid electricity and/or captive electricity by
measures			installation and operation of solar PV system(s), EMS and

	BESS.
Calculation of reference	Reference emissions are calculated on the basis of the amount
emissions	of the electricity displaced by the project by the conservative
	emission factor of the grid and captive electricity.
Calculation of project	Project emissions are the emissions from the solar PV system(s)
emissions	and the storage battery system(s), which are assumed to be zero.
Monitoring parameters	The quantity of the electricity generated by the project solar PV
	system(s).

D. Eligibility criteria		
This methodology is applicable to projects that satisfy all of the following criteria.		
Criterion 1	EMS and BESS are newly installed to a grid and/or captive electricity which is	
	sourced at least from, but not limited to both thermal power such as diesel	
	generator(s) and solar PV system(s). Solar PV system(s) may be newly installed	
	together with EMS and BESS.	
Criterion 2	Installed EMS is equipped with economic load dispatching control function and	
	load frequency control which controls diesel generators and BESS based on	
	projections of electric-load/demand and output of solar PV system(s).	
Criterion 3	The equipment to monitor output power of the solar PV system(s) is installed	
	at the project site.	
Criterion 4	Data of fuel consumption and fuel consumed before activation of EMS and	
	BESS is available for each DG in the power station. The data is to be collected	
	monthly for at least one year.	
Criterion 5	In case the PV modules are newly installed, they need to be certified for design	
	qualifications (IEC 61215, IEC 61646 or IEC 62108) and safety qualification	
	(IEC 61730-1 and IEC 61730-2).	
Criterion 6	In the case of replacing the existing storage battery system (s), a plan is prepared	
	in which mercury used in the existing storage battery system (s) is not released	
	to the environment. Execution of the prevention plan is checked at the time of	
	verification, in order to confirm that mercury used for the existing one replaced	
	by the project is not released to the environment.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Consumption of grid electricity and/or captive electricity	CO_2	
Project emissions		
Emission sources	GHG types	
Generation of electricity from the solar PV system(s)	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Being an island country, almost all the islands generate its own electricity mainly by diesel generators (DG) and all grids in the Maldives are isolated.

It is studied that without EMS-BESS, the efficiency of DG connected to mini-grids in the Maldives is decreased after the installation of solar PV system by 1) lower load operation of the DG and 2) absorption of solar fluctuation by the DG. In addition, 3) EMS and BESS can operate the DG at the most efficient load by the Economic Load Dispatching Control.

This methodology evaluates the improvement of the efficiency of DG by the contribution of EMS-BESS as above by setting the different emission factor from MV_AM001 which considers only PV installation.

To ensure the net emission reductions, the best efficiency among the installed DG in the grid is adopted to calculate the emission factor of the grid. The best efficiency is calculated from the record of generated power (kWh) and consumed fuel (liter) taken from the production report of electricity company or power producer (at least one year data). When available, recorded data before the installation of solar PV system(s) in the grid are applied.

F.2. Calculation of reference emissions

$$\begin{split} \text{RE}_{\text{p}} &= \sum_{i} \text{EG}_{i,p} \times \text{EF}_{\text{RE}} \\ \\ \text{RE}_{\text{p}} &: \text{Reference emissions during the period } p \text{ [tCO}_2/\text{p]} \\ \\ \text{EG}_{i,p} &: \text{The quantity of the electricity generated by the project solar PV system } i \text{ during} \\ \\ & \text{the period } p \text{ [MWh/p]} \end{split}$$

EF_{RE} : The reference CO₂ emission factor of grid and captive electricity [tCO₂/MWh]

G. Calculation of project emissions

 $PE_p = 0$

 PE_p : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

 $ER_p = RE_p \cdot PE_p$ $= RE_p$

 ER_p : Emission reductions during the period *p* [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{RE}	The reference CO ₂ emission factor of grid and	Additional information
	captive electricity, calculated based on the	The default emission factor is
	actual efficiency of the most efficient DG	derived from the result of the
	connected.	survey on the actual efficiency
		of the most efficient DG
		connected to the grid. The actual
		efficiency is set based on the
		data for at least one year. The
		emission factor is equal to or
		less than 0.8 t-CO ₂ /MWh.