Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Mongolia		
Name of the methodology proponents	Hitachi, Ltd.		
submitting this form			
Sectoral scope(s) to which the Proposed	2. Energy distribution;		
Methodology applies			
Title of the proposed methodology, and	Installation of energy-saving transmission lines		
version number	in the Mongolian Grid		
List of documents to be attached to this form	☐The attached draft JCM-PDD:		
(please check):	⊠Additional information		
	Explanatory note on MRV methodology		
Date of completion	January 20, 2014		

History of the proposed methodology

Version	Date	Contents revised
01.0	20 January 2014	First edition

A. Title of the methodology

Installation of energy-saving transmission lines in the Mongolian Grid

B. Terms and definitions

Terms	Definitions				
ACSR (existing conductors)	Aluminum Conductors, Coated-Steel Reinforced, whose				
	structure consists of the steel center strand(s), covered by the				
	outer strands of aluminum.				
LL-ACSR/SA	Low Electrical Power Loss Aluminum Conductors,				
	Aluminum-Clad Steel Reinforced, which have lower				
	transmission loss compared to ACSR by increasing the area				
	of conductive component.				

C. Summary of the methodology

Items	Summary			
GHG emission reduction	Reduction of transmission loss by introduction of			
measures	LL-ACSR/SA.			
Calculation of reference	Calculation of GHG emission due to transmission loss in ACSR,			
emissions	based on the parameters derived from Mongolian Standard			
	MNS5870: 2008.			
Calculation of project	GHG emission due to transmission loss in LL-ACSR/SA, based			
emissions	on monitored transmission loss.			
Monitoring parameters	Power sent from the point of origin/supply to the transmission			
	line, power received at the point of receipt of the transmission			
	line, emission factor of the grid, direct current resistance of the			
	transmission line			

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The transmission line constitutes of a single or double circuit(s) directly					
	connecting a substation and another substation within the country with no					
	branching in between, and does not constitute a part of a loop.					
Criterion 2	The type of conductor is LL-ACSR/SA, which meets the following technical					
	criteria ¹ .					
	Type of energy-saving conductors	unit	Equivalent to LL-ACSR/SA 279/20mm ²	Equivalent to LL-ACSR/SA 337/27mm ²	Equivalent to LL-ACSR/SA 445/36mm ²	
	Outer diameter of conductor	mm	21.6	24.0	27.5	
	Direct current resistance (@20degC)	Ω/km	0.1063	0.0862	0.0659	
	Tensile strength N 75,050 90,574 120,481					
	Weight	kg/km	921	1,132	1,490	
	Corresponding conductors currently in use that forms the basis of calculating the reference emissions.		ACSR 240/32mm ²	ACSR 300/39mm ²	ACSR 400/51mm ²	

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Transmission loss in reference scenario	CO_2		
Project emissions			

_

¹ Outer diameter and weight shall be equal or less, tensile strength shall be equal or more, and direct current resistance shall be 10% lower than that of existing conductors according to MNS5870: 2008. Direct current resistance shall be measured according to IEC 60468 (Method of measurement of resistivity of metallic materials) or other relevant national or international standards., and outer diameter, tensile strength and weight shall be measured according to IEC 62219 (Overhead electrical conductors -Formed wire, concentric lay. stranded conductors) or other relevant national or international standards.

Emission sources	GHG types
Transmission loss in project	CO_2

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emission is calculated by multiplying transmission loss in the reference scenario $(LOSS_{RF,L})$ by the emission factor of the grid $(EF_{Grid,y})$.

F.2. Calculation of reference emissions

Reference emission is calculated by the following equation.

$$RE_{y} = \sum_{L} \left(LOSS_{RF,L,y} \times EF_{Grid,y} \right)$$

$$IOSS_{RF,L} = IOSS_{RF,L} \times \frac{Rdc_{RF,L}}{R}$$
(1)

$$LOSS_{RF,L,y} = LOSS_{PJ,L,y} \times \frac{Rdc_{RF,L}}{Rdc_{PJ,L}}$$
(2)

Where

 RE_y = Reference emissions during the period of year y [tCO₂/yr]

 $LOSS_{RF,L,y}$ = Reference transmission loss at transmission line L in year y [MWh/y]

 $EF_{Grid,y}$ = CO_2 mission factor of the grid in year y [tCO_2/MWh]

 $LOSS_{PJ,L,y}$ = Project transmission loss at transmission line L in year y [MWh/y]

 $Rdc_{RFL} \qquad \qquad Direct \ current \ resistance \ of \ transmission \ line \ L \ using \ currently \ used$

transmission conductors (@20 deg. C) $[\Omega/km]$

Direct current resistance of transmission line L using LL-ACSR/SA

 $Rdc_{PJ,L}$ = conductors (@20 deg. C) [Ω /km]

G. Calculation of project emissions

Project emission is calculated by multiplying transmission loss in the project (LOSS_{PJL}) by the

CO₂ emission factor of the grid (EF_{Grid,y}).

$$PE_{y} = \sum_{L} \left(LOSS_{PJ,L,y} \times EF_{Grid,y} \right)$$
(3)

$$LOSS_{PJ,L,y} = E_{L,send,y} - E_{L,receivey}$$
 (4)

Where

 PE_v = Project emissions during the period of year y [tCO₂/yr]

 $LOSS_{PJ,L,y} \quad = \quad Project \ transmission \ loss \ at \ transmission \ line \ L \ in \ year \ y \ [MWh/y]$

Power sent from the point of origin/supply to the transmission line L in year

 $E_{L,send,y} = y [MWh/y]$

Power received at the point of receipt of the transmission line L in year y

 $E_{L,receive,y} \quad = \quad \\ [MWh/y]$

 $EF_{Grid,y}$ = CO_2 emission factor of the grid in year y [tCO₂/MWh]

H. Calculation of emissions reductions

Emission reduction is calculated by the following equation.

$$ER_{y} = RE_{y} - PE_{y} \tag{5}$$

Where

 ER_v = Emission reduction in year y [tCO₂/yr]

 RE_v = Reference emission in year y [tCO₂/yr]

 PE_y = Project emission in year y [tCO₂/yr]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Paramet	Description of data					Source
er						
$Rdc_{PJ,L}$	Direct current resistance of transmission line L using LL-ACSR/SA conductors (@20 deg. C)				Measured according to IEC 60468 (Method of measurement of resistivity of metallic materials).	
Rdc _{RF,L}	As described	d in the	following table	;		Based on
	Type of energy-sav ing conductors	unit	Equivalent to LL-ACSR/S A 279/20mm ²	Equivalent to LL-ACSR/S A 337/27mm ²	Equivalent to LL-ACSR/S A 445/36mm ²	MNS5870: 2008 ²
	Rdc _{RF,L} (Direct current resistance at 20degC)	Ω/km	0.1158	0.0939	0.0718	

 $^{^2\,}$ Allowing for 1% increase in diameter resulting in 2% reduction in direct current resistance as defined by MNS 5870: 2008.