Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Mongolia	
Name of the methodology proponents	Suuri-Keikaku CO., LTD.	
submitting this form	Climate Experts LTD.	
Sectoral scope(s) to which the Proposed	1. Energy industries	
Methodology applies		
Title of the proposed methodology, and	Replacement and Installation of High	
version number	Efficiency Heat Only Boiler (HOB) for Hot	
	Water Supply Systems (Ver. 1.0)	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
	Appendix 1: Reference HOB and boiler	
	efficiency	
	Appendix 2: The Result of Millennium	
	Challenge Account – Mongolia	
	Appendix 3: Heating capacity of boilers from	
	0.10 to 3.15 MW. General specifications	
Date of completion	10/11/2014	

History of the proposed methodology

Version	Date	Contents revised
1.0	10/11/2014	First Edition

A. Title of the methodology

Replacement and Installation of High Efficiency Heat Only Boiler (HOB) for Hot Water Supply systems (Ver. 1.0)

B. Terms and definitions

Terms	Definitions
HOB	The HOB is defined as a boiler to supply hot water.

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This project involves the installation of new HOB for hot water	
measures	supply system and the replacement of existing coal-fired HOB.	
	The boiler efficiency of the reference HOB is typically lower	
	than that of the project HOB. Therefore, the project activity	
	leads to the reduction of coal consumption, resulting in lower	
	emission of GHGs as well as air pollutants.	
Calculation of reference	Reference emissions are calculated by the net heat quantity	
emissions	supplied by the project HOB, boiler efficiency of the reference	
	HOB and CO ₂ emission factor of coal.	
Calculation of project	The sources of project emissions are coal consumption and	
emissions	electricity consumption of project HOB.	
	Project emissions are calculated by the net heat quantity	
	supplied by the project HOB, boiler efficiency of the project	
	HOB and CO ₂ emission factor of coal. In addition, project	
	emissions due to auxiliary electricity consumption are included,	
	on the basis of electricity consumption and CO ₂ emission factor	
	of the grid.	
Monitoring parameters	 Net heat quantity supplied by the project HOB 	
	• Total hours of the project HOB operation during the	
	monitoring period	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Technology to be employed in this methodology is coal-fired heat only boiler
	(HOB) for hot water supply system.
Criterion 2	Capacity of the project HOB ranges from 0.10 MW to 1.00MW.
Criterion 3	The project activity involves the installation of new HOB and/or the replacement
	of the existing coal-fired HOB.
Criterion 4	Project HOB is equipped with an operation and maintenance manual.
Criterion 5	The catalog value of the boiler efficiency for the project HOB is 80% or higher.
Criterion 6	The project HOB has the function to feed coal on the stoker uniformly and is
	equipped with a dust collector.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Coal consumption of reference HOB	CO_2	
Project emissions		
Emission sources	GHG types	
Coal consumption of project HOB	CO_2	
Electricity consumption of project HOB	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

In Mongolia, without financial assistance, it is expected that the existing conventional type HOB continues to be used, or the vertical type HOB is easy to be introduced because of its low price and easy operation. Those types have high diffusion rate in Mongolia. The coal, major fuel for HOB, is loaded into a fixed fire gate by manual operation in those HOBs resulting in low boiler efficiency. The vertical type HOB has higher boiler efficiency than the existing conventional type HOB.

It should also be emphasized that catalog efficiency of boiler whose capacity ranges from 0.10 MW to 3.15 MW is no less than 75% since 2001, which is required by the Mongolian national

standard, MNS 5043:2001.

In this methodology, it is assumed that the vertical type HOB with catalog efficiency of no less than 75% will normally be introduced and/or continue to be used to provide hot water, therefore, it is defined as the reference HOB. "Boiler efficiency of the reference HOB" is set as a default value to calculate reference emissions, and its value is set in a conservative manner to achieve net emission reductions.

F.2. Calculation of reference emissions

Reference emissions are calculated by the amount of the reference coal consumption and CO₂ emission factor. The amount of coal consumption in the reference scenario is calculated by dividing "net heat quantity supplied by the project HOB" by "boiler efficiency of the reference HOB". This is because the net heat quantity of the reference HOB is equal to the net heat quantity of the project HOB. Both "CO₂ emission factor" and "boiler efficiency of the reference HOB" are set as default values. "Net heat quantity supplied by the project HOB" is a monitoring parameter. Therefore, the reference emissions are calculated as follows.

 $RE_{\rm p} = PH_{\rm p}/\eta_{RE,HOB} \times EF_{CO2,coal}$

Where:

 RE_n : Reference emissions during the period p [tCO₂/p]

 PH_p : Net heat quantity supplied by the project HOB during the period p [GJ/p]

 $\eta_{RE,HOB}$: Boiler efficiency of the reference HOB [-]

 $EF_{CO2,coal}$: CO₂ emission factor of coal [tCO₂/GJ]

Although the reference HOB may use electricity, it is not included to ensure conservativeness.

G. Calculation of project emissions

Project emissions are calculated by "the amount of the project coal consumption" and "CO₂ emission factor". The amount of project coal consumption is calculated by dividing "net heat quantity supplied by the project HOB" by "boiler efficiency of the project HOB". Both "CO₂ emission factor" and "boiler efficiency of the project HOB" are set as default values. "Net heat quantity supplied by the project HOB" is a monitoring parameter.

Additionally, electricity consumption of the project HOB is calculated in a conservative manner. Therefore, the project emissions are calculated as follows.

 $PE_p = PH_p/\eta_{PJ,HOB} \times EF_{CO2,coal} + EC_p \times EF_{CO2,grid}$

Where;

 PE_p : Project emissions during the period p [tCO₂/p]

 PH_p : Net heat quantity supplied by the project HOB during the period p [GJ/p]

 $\eta_{PJ,HOB}$: Boiler efficiency of the project HOB [-] $EF_{CO2,coal}$: CO₂ emission factor of coal [tCO₂/GJ]

 EC_p : Electricity consumption of the project HOB during the period p [MWh/p] $EF_{CO2,grid}$: CO_2 emission factor of the grid electricity consumed by the project HOB

[tCO₂/MWh]

 $EC_p = \text{RPC}_{PJ,HOB} \div 1000 \times HMP_p$

Where;

 EC_p : Electricity consumption of the project HOB during the period p

[MWh/p]

 RPC_{PLHOB} : Rated power consumption of the project HOB [kW]

 HMP_p : Total hours of the project HOB operation during the monitoring period p

[h/p]

H. Calculation of emissions reductions

Emission reductions are calculated from reference emissions and project emissions.

 $ER_p = RE_p - PE_p$

Where:

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$\eta_{RE,HOB}$	Boiler efficiency of the reference HOB	Actual measured values.
	calculated from published information and	
	measured data: Default value of 53.3% is	
	applied.	

$\eta_{PJ,HOB}$	Boiler efficiency of the project HOB	Actual measured values.
	calculated from published information and	
	measured data: Default value of 61.0% is	
	applied.	
EF _{CO2,coal}	CO ₂ emission factor of coal	Default emission factor applied to
		lignite fuel according to "2006
		IPCC Guidelines for National
		Greenhouse Gas Inventory"
EF _{CO2,grid}	CO ₂ emission factor of the grid electricity	The most recent value available at
	consumed by the project HOB	the time of validation is applied
		and fixed for the monitoring period
		thereafter. The data is sourced from
		CDM Mongolia unless otherwise
		instructed by the Joint Committee.
$RPC_{PJ,HOB}$	Rated power consumption of the project	Catalog value provided by the
	НОВ	manufacturer of the project HOB

Note 1:

[&]quot;http://www.cdm-mongolia.com/index.php?option=com_content&view=article&id=75&Itemid =95&lang=en"