JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of the Union of Myanmar	
Name of the methodology proponents	Ryobi Holdings Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Installation of Energy-efficient Refrigerators	
version number	Using Natural Refrigerant at Cold Storage,	
	Version 01.0	
List of documents to be attached to this form	☐ The attached draft JCM-PDD:	
(please check):	⊠Additional information	
Date of completion	10/07/2019	

History of the proposed methodology

Version	Date	Contents revised
1.0	10/07/2019	First edition

A. Title of the methodology

 $In stallation \ of \ Energy-efficient \ Refrigerators \ Using \ Natural \ Refrigerant \ at \ Cold \ Storage, \ Version \ 01.0$

B. Terms and definitions

Terms	Definitions	
Secondary loop cooling system	A secondary loop cooling system is an indirect cooling	
	system that cools the object with a secondary refrigerant	
	(e.g., brine) which is cooled by a primary refrigerant (e.g.,	
	HFC). The secondary loop cooling system primarily consists	
	of the refrigerator which is mainly composed of the	
	compressor and heat exchangers as the primary refrigeration	
	cycle and pumps, heat exchangers and fans as the secondary	
	refrigeration cycle.	
	The secondary loop cooling system is described as "primary	
	refrigerant/secondary refrigerant" (e.g., "HFC/brine").	
Coefficient of Performance	COP is defined as a value calculated by dividing refrigeration	
(COP)	capacity by electricity consumption of a refrigerator under a	
	full load condition. Electricity consumption of a refrigerator	
	is defined in this methodology as the electricity used to	
	operate the compressor. Electricity consumption of pumps for	
	circulating the secondary refrigerant, and other ancillary	
	equipment are not included in the COP calculation.	
	The room temperature conditions at which COPs are	
	calculated in this methodology are shown below:	
	•Room temperature condition: - 25 deg. C, 0 deg. C, 5 deg. C	
	•Cooling water fed to condenser: inlet 32 deg. C	
Natural refrigerant	Natural refrigerant refers to naturally occurring substances	
	with refrigeration capacity and with zero ozone depletion	
	potential (ODP) (e.g. CO ₂ and NH ₃).	
Periodical check	Periodical check is a periodical maintenance operation done	
	by the manufacturer or an agent who is authorized by the	

manufacturer to maintain refrigerator performance (not
including part replacement or overhaul).

C. Summary of the methodology

Items	Summary		
GHG emission reduction	Energy-efficient refrigerators using natural refrigerant is		
measures	introduced for energy saving at the food industry cold storage.		
Calculation of reference	Reference emissions are GHG emissions from reference		
emissions	refrigerators, calculated by using data of power consumption of		
	project refrigerator, ratio of COPs of reference/project		
	refrigerators and CO ₂ emission factor for consumed electricity.		
Calculation of project	Project emissions are GHG emissions from project refrigerator,		
emissions	calculated with power consumption of project refrigerator and		
	CO ₂ emission factor for consumed electricity.		
Monitoring parameters	Amount of electricity consumed by project refrigerator		
	Electricity imported from the grid, where applicable		
	Operating time of captive electricity generator, where		
	applicable		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Refrigerator(s) with a secondary loop cooling system using CO ₂ as a refrigerant			
	and equipped with inve	erter is installed at food industry	cold storage.	
Criterion 2	COP for the project ref	rigerator(s) installed in the proje	ct cooling system is mo	ore
	than the threshold COP	values set in the tables below. ("x" in the table represe	ents
	cooling capacity per unit.)			
	Room temperature	Cooling capacity	Threshold COP	
	condition	(kW)	value	
	- 25 deg. C	$42.4 \le x \le 340.0$	1.71	
	0 deg. C	$73.6 \le x \le 516.4$	2.79	
	5 deg. C	$86.2 \le x \le 612.6$	3.20	
	COP for the project refrigerator(s) are calculated with the following conditions:			

	• Room temperature condition: - 25 deg. C or 0 deg. C or 5 deg. C		
	• Cooling water fed to condenser: inlet 32 deg. C		
Criterion 3	Periodical check is planned at least one (1) time annually.		
Criterion 4	In the case of replacing the existing refrigerator with the project refrigerator, a		
	plan for prevention of releasing refrigerant used in the existing refrigerator to the		
	air (e.g. re-use of the equipment) is prepared. Execution of this plan is checked at		
	the time of verification, in order to confirm that refrigerant used for the existing		
	one replaced by the project is prevented from being released to the air.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Power consumption by the reference refrigerator	CO_2		
Project emissions			
Emission sources	GHG types		
Power consumption by the project refrigerator	CO_2		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying the power consumption of project refrigerator, ratio of COPs for reference/project refrigerators and CO₂ emission factor for electricity consumed.

The following types of cooling system are identified as possible cooling systems other than the project system to be installed at food industry cold storage:

- For room temperature condition of -25 deg. C: HFC dry expansion (single loop), NH₃ flooded, pump system (single loop), HFC/brine (secondary loop) and NH₃/brine (secondary loop)
- For room temperature condition of 0 deg. C and 5 deg. C: HFC dry expansion (single loop) This methodology ensures that net emission reductions are achieved by applying the following conservative assumptions:

• Determination of default values for COP_{RE}:

The maximum COP values of refrigerators among the data of possible type cooling systems available in Myanmar market within the range specified by Criterion 2 is defined as the default values of COP_{RE} (1.71 for temperature condition of - 25 deg. C, 2.79 for temperature condition of 0 deg. C and 3.20 for 5 deg. C) to ensure net emission reductions.

• Emissions associated with leakage of refrigerant in operation:

Among the possible types of cooling systems, two cooling systems use HFCs (R404A, GWP: 3,000-4,000) as refrigerant. The project cooling system uses a natural refrigerant that has a very small GWP (CO₂: 1, NH₃: less than 1). Emissions associated with leakage of refrigerant are not counted in the emission reduction calculation.

• Project refrigerator equipped with inverter:

The project refrigerator is controlled by inverter technology. In this methodology, COP is defined under the condition of full load although in reality a cold storage is often operated under the condition of partial load where the efficiency of the refrigerator without inverter tends to decrease because of its intermittent operation. Calculating emissions based on the COPs of full load conditions is deemed conservative since the efficiency of the project refrigerator is likely to be maintained either at the full load or at partial load condition as it is equipped with inverter.

F.2. Calculation of reference emissions

	$RE_p = \sum_{i} \left(EC_{PJ,i,p} \times \frac{COP_{PJ,i}}{COP_{RE,i}} \times EF_{elec} \right)$
Where	
RE_p	Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$	Power consumption of the project refrigerator i during the period p [MWh/p]
$COP_{PI,i}$	COP of the project refrigerator <i>i</i>

 $COP_{RE,i}$ COP of the reference refrigerator i

EF_{elec} CO₂ emission factor for consumed electricity [tCO₂/MWh]

i Identification number of refrigerator

G. Calculation of project emissions

$PE_p =$	\sum_{i}	$(EC_{PJ,i,p}$	×	EF_{elec})
----------	------------	----------------	---	---------------

Where

 PE_p Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$ Power consumption of the project refrigerator i during the period p [MWh/p]

*EF*_{elec} CO₂ emission factor for consumed electricity [tCO₂/MWh]

i Identification number of refrigerator

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$
Where	
ER_p	Emission reductions during the period p [tCO ₂ /p]
RE_p	Reference emissions during the period p [tCO ₂ /p]
PE_p	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$COP_{PJ,i}$	COP of the project refrigerator i	Specifications for the quotation
		or factory acceptance test data
	The room temperature conditions at which	at the time of shipment by
	COPs are calculated in this methodology are	manufacturer.
	shown below:	
	• Room temperature condition: - 25 deg. C,	
	0 deg. C, 5 deg. C	
	• Cooling water fed to condenser: inlet 32	
	deg. C	
$COP_{RE,i}$	COP of the reference refrigerator i	Specifications for the quotation
		or factory acceptance test data

The default values for $COP_{RE,i}$ is applied
depending on the room temperature condition
set for the project refrigerator <i>i</i> :

Temperature	Cooling	Default
condition	capacity	values
- 25 deg. C	$42.4 \le x \le$	1.71
	340kW	
0 deg. C	$73.6 \le x \le$	2.79
	516.4kW	
5 deg. C	$86.2 \le x \le$	3.20
	612.6kW	

*"x" in the table represents cooling capacity per unit.

at the time of shipment by manufacturer.

The default COP values are derived from the maximum value of COP among the available data of the possible types of refrigerators except project within the range specified by Criterion 2. The survey should prove the use of clear methodology. Default values of $COP_{RE,i}$ should be revised if necessary from survey result which is conducted by JC or project participants.

 EF_{elec}

CO₂ emission factor for consumed electricity

When project refrigerator consumes only grid electricity or captive electricity, the project participant applies the CO₂ emission factor respectively.

When project refrigerator may consume both grid electricity and captive electricity, the project participant applies the CO₂ emission factor with lower value.

[CO₂ emission factor]

For grid electricity: The most recent value available from the source stated in this table at the time of validation

For captive electricity, it is determined based on the following options:

a) Calculated from its power generation

[Grid electricity]

PDD of the most recently registered CDM project hosted in Myanmar or the latest version of the "Tool to calculate the emission factor for an electricity system" under the CDM at the time of validation.

[Captive electricity]

For the option a) Specification of the captive power generation system provided by the manufacturer $(\eta_{elec} [\%])$.

 CO_2 emission factor of the fossil fuel type used in the captive power generation system (EF_{fuel} [tCO₂/GJ])

efficiency (η_{elec} [%]) obtained from manufacturer's specification

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data
The power generation efficiency calculated
from monitored data of the amount of fuel
input for power generation ($FC_{PJ,p}$) and the
amount of electricity generated ($EG_{PJ,p}$)
during the monitoring period p is applied. The
measurement is conducted with the monitoring
equipment to which calibration certificate is
issued by an entity accredited under
national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

For the option b)

Generated and supplied electricity by the captive power generation system ($EG_{PJ,p}$ [MWh/p]).

Fuel amount consumed by the captive power generation system ($FC_{PJ,p}$ [mass or weight/p]).

Net calorific value (NCV_{fuel} [GJ/mass or weight]) and CO₂ emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- regional or national default values;
- 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel]

CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas]

2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.

fuel type	Diesel fuel	Natural gas
EF_{elec}	0.8 *1	0.46 *2

- *1 The most recent value at the time of validation is applied.
- *2 The value is calculated with the equation in the option a) above. The lower value of default effective CO₂ emission factor for natural gas (0.0543tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.

CDM Methodological tool
"Determining the baseline
efficiency of thermal or electric
energy generation systems
version 02.0" for the default
efficiency for off-grid power
plants.