JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of the Union of Myanmar		
Name of the methodology proponents	JFE Engineering Corporation		
submitting this form			
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable - /		
Methodology applies	non-renewable sources)		
	13. Waste handling and disposal		
Title of the proposed methodology, and	Power generation and avoidance of landfill gas		
version number	emissions through combustion of municipal solid		
	waste (MSW), ver. 01.0		
List of documents to be attached to this form	☐The attached draft JCM-PDD:		
(please check):	⊠Additional information		
Date of completion	12/03/2018		

History of the proposed methodology

Version	Date	Contents revised		
01.0	12/03/2018	First edition		

A. Title of the methodology

Power generation and avoidance of landfill gas emissions through combustion of municipal solid waste (MSW), ver. 01.0

B. Terms and definitions

Terms	Definitions		
Municipal solid waste (MSW)	A heterogeneous mix of different solid waste types, usually		
	collected by municipalities or other local authorities. MSW		
	includes household waste, garden/park waste and		
	commercial/institutional waste.		
Solid waste disposal site	Designated areas intended as the final storage place for solid		
(SWDS)	waste.		

C. Summary of the methodology

Items		Summary		
GHG emission	reduction	Installation of MSW incinerators avoids emissions of methane		
measures		associated with disposed organic waste in a SWDS, and		
		electricity generated by the project facility displaces electricity		
		from a grid or captive power generator which is generated using		
		fossil fuels resulting in GHG emission reductions.		
Calculation of	reference	Reference emissions are calculated as a sum of the following		
emissions		emissions:		
		• CH ₄ emissions from SWDS: Calculated from the amount of		
		MSW and fraction of each waste type incinerated in the		
		incinerator using the first order decay (FOD) model; and		
		• CO ₂ emissions from a grid or captive power generator:		
		Electricity generated by the project facility multiplied by		
		the emission factor of displaced electricity.		
Calculation of	project	Project emissions are calculated as a sum of the following		
emissions		emissions:		

	• CO ₂ emissions from combustion of fossil carbon contained	
	in MSW: The amount of MSW multiplied by the fraction of	
	fossil carbon content and the conversion factor of carbon;	
	• N ₂ O emissions from combustion of waste: The amount of	
	MSW multiplied by the N2O emission factor associated	
	with incineration;	
	• CO ₂ emissions from electricity used to operate the project	
	facility: Electricity used to operate the project facility	
	multiplied by the emission factor of electricity; and	
	CO ₂ emissions from auxiliary fossil fuel consumption	
	associated with incineration: The amount of fossil fuel	
	consumption associated with incineration multiplied by the	
	emission factor of the fossil fuel.	
Monitoring parameters	Quantity of MSW fed into incinerator (wet basis);	
	Quantity of electricity generated by the project facility;	
	Quantity of electricity consumed by the project facility; and	
	Quantity of auxiliary fossil fuel consumed.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project newly installs an incinerator, waste heat recovery boiler, exhaust gas	
Cinenon i	treatment equipment and turbine generator.	
	The project incinerates municipal solid waste (MSW) which has been disposed at	
Criterion 2	a SWDS where the generated landfill gas is not recovered, and generates	
	electricity from steam produced in waste heat recovery boiler.	
Criterion 3	There is a plan to operate the project facility for more than 5 years.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Decomposition of waste at a SWDS	CH ₄	
Electricity generation	CO_2	
Project emissions		

Emission sources	GHG types
Combustion of fossil carbon contained in waste	CO_2
Incineration of waste	N_2O
Electricity use by the project facility	CO ₂
Consumption of auxiliary fossil fuels needed to be added into	CO_2
incinerator	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

A project which applies this methodology incinerates MSW and generates electricity. In Myanmar, MSW is usually disposed in open dump sites without recovering landfill gas. Although some initiatives exist to treat waste with alternative methods such as incinerating MSW, the cost of alternative treatment of waste hampers its installation. Therefore, without the financial assistance the alternative waste treatment facility would not be installed. As a result, BaU for MSW treatment is open dumping and BaU emissions are CH₄ emissions from decomposition of MSW at a SWDS and CO₂ emissions from fossil fuels combusted to generate electricity which would be displaced by the project. CH₄ emissions from decomposition of MSW at a SWDS are calculated based on a first order decay (FOD) model.

To assure net emission reductions, the model correction factor which accounts for uncertainty of the model to calculate emissions from decomposition of MSW is set conservatively. Therefore, the reference emissions are a summation of conservative CH₄ emissions from decomposition of MSW at a SWDS and CO₂ emissions from fossil fuels combusted to generate electricity which would be displaced by the project.

F.2. Calculation of reference emissions

 $RE_p = RE_{CH4,p} + RE_{elec,p}$

Where:

 RE_p = Reference emissions during the period p [tCO₂e/p]

RE_{CH4.p} = Reference emissions from decomposition of MSW at a SWDS during the period

p [tCO₂e/p]

 $RE_{elec.p}$ = Reference emissions from electricity generation during the period p [tCO₂e/p]

Reference emissions from decomposition of MSW at a SWDS during the period p (RE_{CH4,p}) is

accounted only from the next calendar year after its disposal at a SWDS (or incineration) due to delay in generation of CH₄ from the time of disposal at a SWDS.

$$RE_{CH4,p} = \sum_{y=p_start}^{p_end} \left[\phi \times (1-f) \times GWP_{CH4} \times (1-OX) \times \frac{16}{12} \times F \times DOC_f \times MCF \right]$$

$$\times \sum_{i=1}^{y-1} \sum_{j} \{W_i \times P_j \times DOC_j \times e^{-k_j(y-1-i)} \times \left(1 - e^{-k_j}\right)\}$$

Where:

 $RE_{CH4,p}$ = Reference emissions from decomposition of MSW at a SWDS during the period

p [tCO₂e/p]

 $y = The N^{th}$ year from the first disposal (or incineration), extending from the first

year of the period p ($y=p_start$) to the last year of the period p ($y=p_end$). If y is

equal to 1, methane generation cannot be accounted.

p_start = The Nth year from the first disposal (or incineration), which is the first year of

the period p

p_end = The Nth year from the first disposal (or incineration), which is the last year of

the period p

φ = Model correction factor to account for model uncertainties

f = Fraction of methane captured at a SWDS and flared, combusted or used in

another manner that prevents the emissions of methane to the atmosphere

 GWP_{CH4} = Global Warming Potential of methane [tCO₂e/tCH₄]

OX = Oxidation factor (reflecting the amount of methane from a SWDS that is

oxidized in the soil or other material covering the waste)

 $\frac{16}{12}$ = Conversion factor [tCH₄/tC]

F = Fraction of methane in the SWDS gas [volume fraction]

DOC_f = Fraction of degradable organic carbon (DOC) that decomposes under the

specific conditions occurring in a SWDS [weight fraction]

MCF = Methane correction factor

i = The Nth year from the first disposal (or incineration), extending from the first

year in the time period in which MSW is disposed at a SWDS (i = 1) to year y (i

= y)

 W_i = Quantity of MSW fed into incinerator in the year i (wet basis) [t]

 P_i = Fraction of the waste type j [weight fraction]

 DOC_i = Fraction of degradable organic carbon in the waste type j [weight fraction]

 k_i = Decay rate for the waste type j [1/yr]

j = Type of waste

 $RE_{elec,p} = EG_{elec,p} \times EF_{elec}$

Where:

 $RE_{elec.p}$ = Reference emissions from electricity generation during the period p [tCO₂e/p]

 $EG_{elec,p}$ = Quantity of electricity generated by the project facility during the period p

[MWh/p]

EF_{elec} = Emission factor for electricity generation [tCO₂e/MWh]

G. Calculation of project emissions

 $PE_p = PE_{COM_CO2,p} + PE_{COM_N2O,p} + PE_{EC,p} + PE_{FC,p}$

Where:

 PE_p = Project emissions during the period p [tCO₂e/p]

PE_{COM_CO2,p} =Project emissions of CO₂ from combustion of fossil carbon contained in waste

associated with incineration during the period p [tCO₂e/p]

PE_{COM N2O,p} =Project emissions of N₂O from combustion of waste associated with

incineration during the period p [tCO₂e/p]

PE_{EC,p} = Project emissions from electricity consumption by the project facility during the

period p [tCO₂e/p]

PE_{FC,p} = Project emissions from auxiliary fossil fuel consumption associated with

incineration during the period p [tCO₂e/p]

$$PE_{COM_CO2,p} = EFF_{COM} \times \frac{44}{12} \times \sum_{j} \left(\sum_{i=p_start}^{p_end} W_i \times P_j \times \frac{DC}{100} \times FCC_j \times FFC_j \right)$$

Where:

PE_{COM CO2,p}= Project emissions of CO₂ from combustion of fossil carbon contained in waste

associated with incineration during the period p [tCO₂e/p]

EFF_{COM} = Combustion efficiency of incinerator [fraction]

 $\frac{44}{t^2}$ = Conversion factor [tCO₂/tC]

i = The N^{th} year from the first incineration

 p_start = The N^{th} year from the first incineration, which is the first year of the period p

 p_{end} = The Nth year from the first incineration, which is the last year of the period p

 W_i = Quantity of MSW fed into incinerator in the year i (wet basis) [t]

 P_i = Fraction of the waste type j [weight fraction]

DC = Dry matter content of MSW [%]

 FCC_i = Fraction of total carbon content in waste type j [tC/t]

FFC_i = Fraction of fossil carbon in total carbon content of waste type j [weight

fraction]

 \mathbf{j} = Type of waste

$$PE_{COM_N2O,p} = \sum_{i=p_start}^{p_end} W_i \times EF_{N2O} \times GWP_{N2O}$$

Where:

PE_{COM_N2O,p} =Project emissions of N₂O from combustion of waste associated with

incineration during the period p [tCO₂e/p]

i = The N^{th} year from the first incineration

p_start = The N^{th} year from the first incineration, which is the first year of the period p

p_end = The N^{th} year from the first incineration, which is the last year of the period p

 W_i = Quantity of MSW fed into incinerator in the year i (wet basis) [t]

 EF_{N2O} = Emission factor for N_2O associated with incineration [t N_2O/t waste]

GWP_{N2O} =Global Warming Potential of nitrous oxide [tCO₂e/tN₂O]

 $PE_{EC,p} = EC_p \times EF_{elec}$

Where:

PE_{EC.n} = Project emissions from electricity consumption by the project facility during the

period p [tCO₂e/p]

 EC_p = Quantity of electricity consumed by the project facility during the period p

[MWh/p]

EF_{elec} = Emission factor for electricity generation [tCO₂e/MWh]

$$PE_{FC,p} = \sum_{finel} (FC_{fuel,p} \times NCV_{fuel} \times EF_{CO2,fuel})$$

Where:

PE_{FC,p} = Project emissions from auxiliary fossil fuel consumption associated with

incineration during the period p [tCO₂e/p]

 $FC_{fuel,p}$ = Quantity of auxiliary fossil fuel consumed during the period p [kL or m³/p]

NCV_{fuel} = Net calorific value of fuel [GJ/kL or m³]

 $EF_{CO2,fuel} \quad = \quad CO_2 \ emission \ factor \ of \ fuel \ [tCO_2/GJ]$

fuel = Type of fuel

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

Where:

 ER_p = Emission reductions during the period p [tCO₂e/p] RE_p = Reference emissions during the period p [tCO₂e/p] PE_p = Project emissions during the period p [tCO₂e/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
φ	Model correction factor to account for model	CDM Methodological Tool
	uncertainties	"Emissions from solid
	Default value: 0.80	waste disposal sites"
	The conservative value was selected from the	(Version 07.0)
	default values $\phi_{default}$ in the tool.	
f	Fraction of methane captured at a SWDS and	Decided taking into
	flared, combusted or used in another manner that	consideration the situation
	prevents the emissions of methane to the	in Myanmar
	atmosphere	
	Default value: 0	
GWP _{CH4}	Global Warming Potential of methane [tCO ₂ e/tCH ₄]	Table 2.14, of the errata to
	Default value: 25	the contribution of
		Working Group I to the
		Fourth Assessment Report
		of the IPCC
OX	Oxidation factor (reflecting the amount of methane	CDM Methodological Tool
	from a SWDS that is oxidized in the soil or other	"Emissions from solid
	material covering the waste)	waste disposal sites"

	Default value: 0.1	(Version 07.0)
F	Fraction of methane in the SWDS gas [volume	CDM Methodological Tool
	fraction]	"Emissions from solid
	Default value: 0.5	waste disposal sites"
		(Version 07.0)
DOC_f	Fraction of degradable organic carbon (DOC) that	CDM Methodological Tool
	decomposes under the specific conditions occurring	"Emissions from solid
	in a SWDS [weight fraction]	waste disposal sites"
	Default value: 0.5	(Version 07.0)
MCF	Methane correction factor	CDM Methodological Tool
	Select one of the followings taking into	"Emissions from solid
	consideration the situation of the project.	waste disposal sites"
		(Version 07.0)
	(1) In Yangon City: Default value of 0.8	
	The appropriate value was selected from the default	
	values $MCF_{default}$ in the tool taking into	
	consideration the situation in Yangon City.	
	(2) In other places in Myanmar:	
	(2)-1 In case of a water table above the bottom of	
	the SWDS, estimate the MCF using the following	
	equation.	
	$MCF = MAX \left\{ \left(1 - \frac{2}{d_y} \right), \frac{h_{w,y}}{d_y} \right\}$	
	$h_{w,y}$ = Height of water table measured from the base	
	of the SWDS [m]	
	$d_y = Depth of the SWDS [m]$	
	(2)-2 In case that the SWDS does not have a water	
	table above the bottom of the SWDS, select the	
	applicable value from the following:	
	• 1.0 for anaerobic managed solid waste	
	disposal sites. These have controlled	
	placement of waste (i.e. waste directed to	
	specific deposition areas, a degree of control	
	of scavenging and a degree of control of fires)	
	and will include at least one of the following:	
	(i) cover material; (ii) mechanical compacting;	

			T
	or (iii) leveling of the waste;		
	• 0.5 for semi-aerobic man	aged solid waste	
	disposal sites. These	have controlled	
	placement of waste and will	l include all of the	
	following structures for intr	oducing air to the	
	waste layers: (i) permeable		
	leachate drainage system		
	pondage; and (iv) gas ventila		
	• 0.8 for unmanaged solid wa	-	
	deep. This comprises all S	-	
	the criteria of managed SWI		
	depths of greater than or equ		
	• 0.4 for unmanaged-shall		
	disposal sites or stockpiles t		
	•		
	SWDS. This comprises all S		
	the criteria of managed SWI		
	depths of less than 5 met		
	stockpiles of solid waste the	nat are considered	
Dog	SWDS.		CD1414 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DOC _j	Fraction of degradable organic c	arbon in the waste	CDM Methodological Tool
	type j [weight fraction]		"Emissions from solid
	Default values for <i>DOC</i> _j :	DOG	waste disposal sites"
	Waste type <i>j</i>	DOC _j [% of wet waste]	(Version 07.0) and Table
	Wood and wood products	43	2.4, chapter 2, volume 5 of
	Pulp, paper and cardboard (other than sludge)	40	2006 IPCC guidelines for
	Food, food waste, beverages	15	National GHG Inventories
	and tobacco (other than sludge)	24	
	Textiles Garden, yard and park waste		
	Nappies		
	Glass, plastic, metal, other		
1.	inert waste		
k _j	Decay rate for the waste type j [1	CDM Methodological Tool	
	Default values for k_j :	"Emissions from solid	
	Waste type <i>j</i>	waste disposal sites"	
	Slowly Pulp, paper, card	(Version 07.0)	
	degrading (other than sl textiles		
	Wood, wood pro	oducts 0.035	
	<u>_</u>		

		and etrasy		
	Moderately	and straw Other (nonfood)	0.17	
	degrading	organic putrescible		
		garden and park waste		
	Rapidly	Food, food waste,		
	degrading	sewage sludge, beverages and tobacco		
	The default v	alues k_j for Tropical (N	Aean annua	ત્રી
	temperature>2	0 degree C) and Wet (I	Mean annua	1
	precipitation>	1000mm) were selected	taking int	О
	consideration t	he climate condition of N	Myanmar.	
P _j	Fraction of the	waste type j [weight frac	ction]	Study conducted by the
	Before the val	idation of a proposed pro	oject, take a	nt project participants
	least one sam	ple in each season (bot	h rainy an	d
	dry) from MS'	W transported to a SWD	S within th	e
	same municipa	ality where the project fac	cility is to b	e
	constructed, w	eigh each waste fraction	(measure o	n
	wet basis) taki	ng into consideration th	e waste typ	e
	j, as provided	in the tables for FCC_j ar	$\operatorname{id} FFC_{j}$, an	d
	average each v	vaste fraction j among the	e samples.	
EF _{elec}	Emission fa	ctor for electricity	generatio	n For grid electricity: PDD
	[tCO ₂ e/MWh]			of the most recently
	Select one	of the followings	taking int	o registered CDM project
	consideration the situation of the project.			hosted in Myanmar or the
	For grid electricity: The value available from PDD			latest version of the "Tool
	of the most recently registered CDM project hosted			to calculate the emission
	in Myanmar or the calculated value using the latest			factor for an electricity
	version of the "Tool to calculate the emission factor			r system" under the CDM at
	for an electricity system" under the CDM at the			the time of validation
	time of validation.			For captive electricity:
	For captive electricity: The most recent value			e CDM approved small scale
	available fro	m CDM approved	small scal	e methodology AMS-I.A.
	methodology A	AMS-I.A. at the time of v	alidation.	
EFF _{COM}	Combustion 6	efficiency of incinerate	or [fraction	Table 5.2, chapter 5,
	Default value:	1 (100%)		volume 5 of 2006 IPCC
				guidelines for National
				GHG Inventories
FCC _j	Fraction of to	tal carbon content in	waste type	j CDM approved
	[tC/t]			consolidated baseline and

	Default values for FCC _i :	monitoring methodology	
	Waste type j FCC $_i$		ACM0022 "Alternative
		[% of dry weight]	
	Paper/cardboard	50	waste treatment processes"
	Textiles	50	(Version 02.0)
	Food waste	50	
	Wood	54	
	Garden and Park waste	55	
	Nappies	90	
	Rubber and Leather	67	
	Plastics	85 NA	
	Metal*	NA NA	
	Glass*	NA 5	
	Other, inert waste 5 *Metal and glass contain some carbon of foss		
	origin. Combustion of sign		
	or metal is not common.		
FFC _j	Fraction of fossil carbon i	CDM approved	
	waste type j [weight fraction	consolidated baseline and	
	Default values for FFC_j :	monitoring methodology	
	Waste type <i>j</i>	FFC_i (%)	ACM0022 "Alternative
	Paper/cardboard	5	waste treatment processes"
	Textiles	50	_
	Food waste	-	(Version 02.0)
	Wood	-	
	Garden and Park waste	10	
	Nappies Rubber and Leather	20	
	Plastics	100	
	Metal*	NA	
	Glass* NA		
	Other, inert waste	100	
	*Metal and glass contain origin. Combustion of sign or metal is not common.		
DC	Dry matter content of MSV	Study conducted by the	
	Before the validation of a	project participants	
	least one sample in each		
	dry) from MSW transporte		
	same municipality where t	he project facility is to be	
	constructed, weigh each		
	basis, calculate the fraction		
	for each sample, and average the values obtained.		
EF _{N2O}	Emission factor for N ₂ O associated with		CDM approved
	incineration [tN ₂ O/t waste]	consolidated baseline and	

	Select one of the following default values taking			monitoring methodology
	into consideration the situation of the project.			ACM0022 "Alternative
	Default values for EF_{N2O} :			waste treatment processes"
	Type of waste	Technology / Management practice	EF _{N2O} [tN ₂ O/t waste wet basis]	(Version 02.0) and Table 5.6, chapter 5, volume 5 of
	MSW	Continuous and semicontinuous incinerators	1.21*50*10 ⁻⁶	2006 IPCC Guidelines for National GHG Inventories
	MSW	Batch-type incinerators	1.21*60*10 ⁻⁶	
GWP _{N2O}	Global Warming Potential of nitrous oxide [tCO ₂ e/tN ₂ O] Default value: 298			Table 2.14, of the errata to
				the contribution of
				Working Group I to the
				Fourth Assessment Report
			of the IPCC	
NCV _{fuel}	Net calorific value of fuel [GJ/kL or m ³]			Invoices or other
	Decide from the specifications described on			commercial/contractual
	invoices or other commercial/contractual evidence.			evidence
EF _{CO2,fuel}	CO ₂ emission factor of fuel [tCO ₂ /GJ] Select a value for the fuel combusted by the project			Table 1.4, chapter 1,
				volume 2 of 2006 IPCC
	from the IPCC default values at the upper limit of			Guidelines for National
	the uncertainty at a 95% confidence interval.			GHG Inventories. Upper
				value is applied.