JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of the Union of Myanmar
Name of the methodology proponents	Kirin Holdings Company, Limited.
submitting this form	
Sectoral scope(s) to which the Proposed	3. Energy demand
Methodology applies	
Title of the proposed methodology, and	Introduction of heat recovery system and high
version number	efficiency once-through boiler at the beer
	factory, ver.01.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
Date of completion	15/07/2020

History of the proposed methodology

Version	Date	Contents revised
01.0	15/07/2020	First Edition

A. Title of the methodology

Introduction of heat recovery system and high efficiency once-through boiler at the beer factory, Version.01.0

B. Terms and definitions

Terms	Definitions
Heat Recovery System	A system which has all of the following technological
(hereinafter referred to as HRS)	features.
	1) It recovers waste steam from the process for boiling
	wort.
	2) The recovered steam is used via a heat exchanger for
	pre-heating the wort before entering the boiling process.
	3) After the heat is utilized for pre-heating, the steam is
	recompressed and used for boiling process of wort.
Once-through boiler	A boiler without recirculation where water flows through
	the economizer, furnace wall, and evaporating and
	superheating tubes, sequentially.
Boiler efficiency	The ratio of the total absorption heating value of outlet
	steam/hot water to the total heating value provided by a
	fuel.
Biogas boiler	A boiler which uses biogas generated by the fermentation
	and anaerobic digestion of biological waste, organic
	fertilizer, biodegradable substances, sludge, sewage,
	garbage, energy crops, etc.
Biomass boiler	A boiler which uses solid fuel from renewable, organic
	source of biological origin, such as rice husk or
	agricultural residue, wood pellet, etc. excluding fossil
	fuels.

C. Summary of the methodology

	Items		Summary
GHG	emission	reduction	This methodology is applied to either of the following cases.

measures	Case 1) Installation of both HRS and high efficiency
	once-through boiler
	Case 2) Installation of only HRS
	[HRS]
	The recovered heat is used for preheating the wort before
	boiling process, which reduces the amount of steam supplied
	by project boiler. That leads to reduction of fuel consumed by
	the boiler for heating wort and consequently GHG emissions.
	[High efficiency once-through boiler]
	Installation of once-through boiler improves energy efficiency
	and reduces the fuel consumption, which leads to GHG
	emission reductions.
Calculation of reference	Reference emissions are calculated with the following
emissions	algorithms.
	[HRS]
	Reference emissions are calculated with the heat quantity of
	recovered waste steam, the boiler efficiency and the emission
	factor of fuel used by project boiler or reference boiler.
	[High efficiency once-through boiler]
	Reference emissions are calculated with the fuel consumption
	by project boiler, net calorific value of fuel used by project
	boiler, CO ₂ emission factor of fuel used by reference boiler
	and the ratio of efficiency of project boiler and reference
	boiler.
Calculation of project	Project emissions are calculated with the following
emissions	algorithms.
	[HRS]
	Project emissions are calculated with the monitored electricity
	consumption by pump(s) and emission factor for consumed
	electricity.
	[High efficiency once-through boiler]
	Project emissions are calculated with the monitored fuel
	consumption and emission factor of the fuel of the project
	boiler.
Monitoring parameters	• Amount of wort flowing into wort boiling tank
	• Amount of wort flowing out from wort boiling tank
	• Amount of electricity consumption by project pump

 Amount of fuel consumption by project boiler
--

D. Eligibility criteria			
This methodo	ology is	applicable to pr	ojects that satisfy all of the following criteria.
	The project to which this methodology is applied implements either of the		
	follow	ing cases.	
	Case 1	l) Installation of	both HRS and once-through boiler(s) at the beer
factory Case 2) Installation of only HRS at the beer factory			
		nly HRS at the beer factory	
	In either case, the applicable technology is shown in Table 1 below.riterion 1Table 1: Applicable Technologies		
Criterion 1			
	No.	Technology	Applicable technology and their criteria
	1	HRS	Newly installed.
			Before the implementation of the project, waste
			steam has not been recovered and reused.
	2	Once-through	Once-through boiler with a rated capacity of 7
		boiler(s)	ton/hour per unit or less (equivalent evaporation).
Critorian 2	Biomass boiler is not connected to the project boiling process at the time of		
Criterion 2	validation.		
Critorion 2	Periodical check and maintenance by the manufacturer of HRS and/or boiler,		
Criterion 3	or authorized agent is implemented at least once a year.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fuel consumption by reference boiler	CO ₂	
Project emissions		
Emission sources	GHG types	
Fuel consumption by project boiler	CO ₂	
Electricity consumption by project HRS (pump)	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

[HRS]

Reference emissions are calculated with the heat quantity of recovered waste steam, the boiler efficiency and the emission factor of fuel used by project boiler or reference boiler. Net emission reductions are ensured in the following manner;

- The catalog value of project boiler efficiency is applied to calculate reference emissions. The catalog value is usually higher than the actual efficiency, therefore, it leads to a conservative calculation of reference emissions. (Case 1)
- If the efficiency of project boiler is higher than that of reference boiler, the catalog value of project boiler efficiency is applied to calculate reference emissions. The catalog value is usually higher than the actual efficiency, therefore, it leads to a conservative calculation of reference emissions. (Case 2)
- If the efficiency of a reference boiler is higher than that of a project boiler, the highest efficiency of oil and gas boilers available in Myanmar (89%) is set as a default boiler efficiency value to calculate reference emissions in this methodology. (Case 2)

[High efficiency once-through boiler]

Reference emissions are calculated with the fuel consumption by project boiler, net calorific value of fuel used by project boiler, CO_2 emission factor of fuel used by reference boiler and the ratio of efficiency of project boiler and reference boiler.

Net emission reductions are ensured by setting the default reference boiler efficiency in a conservative manner as described above.

F.2. Calculation of reference emissions

Measure 1: HRS

$$RE_{HRS,p} = \sum_{i} (RH_{PJ,i,p} \div \eta_{PJ,i} \times EF_{PJ,i})$$

$$RH_{PJ,i,p} = (Q_{in,PJ,i,p} - Q_{out,PJ,i,p}) \times SG_{PJ} \times LHV_{PJ}$$
Where
$$RE_{HRS,p}$$
Reference emissions from HRS during the period *p* [tCO₂/p]
$$RH_{PJ,i,p}$$
The amount of heat recovered by the project HRS in production line *i* during the period *p* [GJ/p]
$$\eta_{PJ,i}$$
Efficiency of boiler which supplies heat to production line *i* [dimensionless]
$$EF_{PJ,i}$$
CO₂ emission factor of fuel used by boiler which supplies heat to production line *i* [L/p]
$$Q_{out,PJ,i,p}$$
The amount of wort flowing into wort boiling tank in production line *i* [L/p]
$$SG_{PJ}$$
The specific gravity of saturated water [kg/L]
$$LHV_{PJ}$$
The latent heat of vaporization of water under the project condition (pressure, temperature) [GJ/kg]
i
Haravara 2: Once therewere beiler(a)

Measure 2: Once-through boiler(s)

$$RE_{OTB,p} = \sum_{j} \sum_{k} \left(FC_{PJ,j,k,p} \times NCV_{PJ,j,k} \times EF_{RE} \times \frac{\eta_{PJ,j}}{\eta_{RE}} \right)$$

Where

$RE_{OTB,p}$	Reference emissions from once-through boiler(s) during the period p [tCO ₂ /p]
$FC_{PJ,j,k,p}$	The amount of fuel consumption by project boiler j for the fuel type k during the
	period <i>p</i> [mass or volume unit/p]
$NCV_{PJ,j,k}$	Net calorific value of fuel used by project boiler j for the fuel type k [GJ/mass or
	volume unit]
EF_{RE}	CO ₂ emission factor of fuel used by reference boiler [tCO ₂ /GJ]
$\eta_{PJ,j}$	Efficiency of project boiler j [dimensionless]
η_{RE}	Efficiency of reference boiler [dimensionless]

- *j* Identification number of project boiler
- *k* Identification number of fuel type

Case 2) Installation of only HRS

 $RE_p = RE_{HRS,p}$

Where

 RE_p Reference emissions during the period p [tCO₂/p] $RE_{HRS,p}$ Reference emissions from HRS during the period p [tCO₂/p]

The same equation as Case 1 to calculate $RE_{HRS,p}$ is applied.

 $\eta_{PJ,i}$ denotes "efficiency of boiler which supplies heat to production line *i* or reference boiler, whichever is higher".

G. Calculation of project emissions

Case 1) Installation of both HRS and once-through boiler(s)		
	$PE_p = PE_{HRS,p} + PE_{OTB,p}$	
Where		
PE_p	Project emissions during the period p [tCO ₂ /p]	
$PE_{HRS,p}$	Project emissions from HRS during the period p [tCO ₂ /p]	
PE _{OTB,p}	Project emissions from once-through boiler(s) during the period p [tCO ₂ /p]	

Measure 1: HRS

$$PE_{HRS,p} = \sum_{m} (EC_{PJ,m,p} \times EF_{elec})$$

Where

PE _{HRS,p}	Project emissions from HRS during the period p [tCO ₂ /p]
$EC_{PJ,m,p}$	Electricity consumption by project pump m during the period p [MWh/p]
EF _{elec}	CO2 emission factor for consumed electricity [tCO2/MWh]
т	Identification number of project pump

Measure 2: Once-through boiler(s)

$$PE_{OTB,p} = \sum_{j} \sum_{k} (FC_{PJ,j,k,p} \times NCV_{PJ,j,k} \times EF_{PJ,j,k})$$

Where

PE _{OTB,p}	Project emissions from once-through boiler(s) during the period p [tCO ₂ /p]
$FC_{PJ,j,k,p}$	The amount of fuel consumption by project boiler j for the fuel type k during
	the period <i>p</i> [mass or volume unit/p]
$NCV_{PJ,j,k}$	Net calorific value of fuel used by project boiler j for the fuel type k [GJ/mass
	or volume unit]
$EF_{PJ,j,k}$	CO_2 emission factor of fuel used by project boiler <i>j</i> for the fuel type <i>k</i>

	[tCO ₂ /GJ]		
j	Identification number of project boiler		
k	Identification number of fuel type		
Case 2) Insta	<u>llation of only HRS</u>		
	$PE_p = PE_{HRS,p}$		
Where			
PE_p	Project emissions during the period p [tCO ₂ /p]		
$PE_{HRS,p}$	Project emissions from HRS during the period p [tCO ₂ /p]		
The same equation as Case 1 to calculate $PE_{HRS,p}$ is applied.			
	-		

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$		
Where			
ER_p	Emission reductions during the period p [tCO ₂ /p]		
RE_p	Reference emissions during the period p [tCO ₂ /p]		
PE_p	Project emissions during the period p [tCO ₂ /p]		

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
NCV _{PJ,j,k}	Net calorific value of fossil fuel used by	In the order of preference:
	project boiler j for the fuel type k [GJ/mass or	a) values provided by
	volume unit]	fuel supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values; or
		d) IPCC default values
		provided in table 1.2 of
		Ch.1 Vol.2 of 2006

		IPCC Guidelines on
		National GHG
		Inventories. Upper
		value is applied.
EF _{PJ,i}	CO ₂ emission factor of fuel used by boiler	CO ₂ emission factor of
	which supplies heat to production line <i>i</i>	fuel in order of preference:
	[tCO ₂ /GJ]	a) values provided by
		fuel supplier;
		b) measurement by the
	$EF_{PJ,i}$ is calculated according to the following	project participants;
	formula.	c) regional or national
		default values; or
	(i) only fossil fuel fired boilers are installed to	d) IPCC default values
	supply heat to production line <i>i</i> .	provided in table 1.4 of
	$\mathrm{EF}_{\mathrm{PJ},i} = \mathrm{EF}_{\mathrm{fuel},\mathrm{PJ},i}$	Ch.1 Vol.2 of 2006
		IPCC Guidelines on
	(ii) both fossil fuel fired boilers and biogas	National GHG
	boiler(s) are installed to supply heat to	Inventories. Upper
	production line <i>i</i> .	value is applied.
	$\mathrm{EF}_{\mathrm{PJ},i} = \mathrm{EF}_{\mathrm{fuel},\mathrm{PJ},i} \times \gamma_{\mathrm{PJ},i}$	Rated output of boilers;
	$v_{av} = 1 - \frac{RO_{biofuel,i}}{RO_{biofuel,i}}$	Manufacturer's
	$PP_{i,i} = 1$ $RO_{total,i}$	specifications or catalog.
	Where;	
	$\text{EF}_{\text{fuel},\text{PJ},i}$: CO ₂ emission factor of fossil fuel	
	used by fossil fuel fired boiler which supplies	
	heat to production line <i>i</i>	
	$\gamma_{\mathrm{PJ},i}$: Ratio of total rated output of boilers	
	which supply heat to production line i	
	RO _{biofuel,i} : Total of rated output of biogas	
	and/or biomass boilers which supply heat to	
	production line <i>i</i>	
	RO _{total,i} : Total of rated output of all the	
	boilers including biogas and/or biomass	
	boilers which supply heat to production line <i>i</i>	
$\mathrm{EF}_{\mathrm{PJ},j,\mathbf{k}}$	CO_2 emission factor of fuel used by the	In order of preference:
	project boiler <i>j</i> for the fuel type k [tCO ₂ /GJ]	a) values provided by

		fuel supplier;
		b) measurement by the
		project participants;
		c) regional or national
		default values; or
		d) IPCC default values
		provided in table 1.4
		of Ch.1 Vol.2 of 2006
		IPCC Guidelines on
		National GHG
		Inventories. Upper
		value is applied.
EF _{RE}	CO ₂ emission factor of fuel used by the	In order of preference:
	reference boiler [tCO ₂ /GJ]	a) values provided by
	In case the project boiler replaces an existing	fuel supplier;
	boiler, or a planned boiler of which plan has	b) measurement by the
	been officially approved such as through	project participants;
	boiler installation permit or initial	c) regional or national
	environmental examination/ environmental	default values; or
	impact assessment, the fuel of the existing or	d) IPCC default values
	planned boiler is applied.	provided in table 1.4 of
	Otherwise, the value is the same as $EF_{PJ,j,k}$.	Ch.1 Vol.2 of 2006
		IPCC Guidelines on
		National GHG
		Inventories. Lower
		value is applied.
EF _{elec}	CO ₂ emission factor for consumed electricity	[Grid electricity]
	[tCO ₂ /MWh]	PDD of the most recently
		registered CDM project
	When project pump consumes only grid	hosted in Myanmar or the
	electricity or captive electricity, the project	latest version of the "Tool
	participant applies the CO ₂ emission factor	to calculate the emission
	respectively.	factor for an electricity
		system" under the CDM at
	When project pump may consume both grid	the time of validation.
	electricity and captive electricity, the project	
	participant applies the CO ₂ emission factor	[Captive electricity]

with lower value.	For the option a)
	Specification of the
[CO ₂ emission factor]	captive power generation
For grid electricity: The most recent value	system provided by the
available from the source stated in this table at	manufacturer (η_{elec} [%]).
the time of validation	CO ₂ emission factor of the
	fossil fuel type used in the
For captive electricity, it is determined based	captive power generation
on the following options:	system (EF_{fuel} [tCO ₂ /GJ])
a) Calculated from its power generation	For the option b)
efficiency (η_{elec} [%]) obtained from	Generated and supplied
manufacturer's specification	electricity by the captive
The power generation efficiency based on	power generation system
lower heating value (LHV) of the captive	$(EG_{PJ,p} [MWh/p]).$
power generation system from the	Fuel amount consumed by
manufacturer's specification is applied;	the captive power
$EF_{alac} = 3.6 \times \frac{100}{2} \times EF_{fual}$	generation system $(FC_{PJ,p})$
η_{elec}	[mass or weight/p]).
	Net calorific value
b) Calculated from measured data	(<i>NCV_{fuel}</i> [GJ/mass or
The power generation efficiency calculated	weight]) and CO ₂
from monitored data of the amount of fuel	emission factor of the fuel
input for power generation $(FC_{PJ,p})$ and the	$(EF_{fuel} [tCO_2/GJ])$ in order
amount of electricity generated $(EG_{PJ,p})$	of preference:
during the monitoring period p is applied. The	1) values provided by the
measurement is conducted with the	fuel supplier;
monitoring equipment to which calibration	2) measurement by the
certificate is issued by an entity accredited	project participants;
under national/international standards;	3) regional or national
$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel}$	default values;
$\times \frac{1}{\pi c}$	4) IPCC default values
$EG_{PJ,p}$	provided in tables 1.2 and
Where:	1.4 of Ch.1 Vol.2 of 2006
NCV_{fuel} : Net calorific value of consumed	IPCC Guidelines on
fuel [GJ/mass or weight]	National GHG
	Inventories. Lower value

	Note:			is applied.
	In case the captiv	e electricity	[Continue of activity south	
	system meets all	of the follow	Captive electricity with	
	the value in the f	ollowing tab	diesel fuel]	
	applied to EF_{ele}	c depending	g on the	CDM approved small
	consumed fuel ty	vpe.		scale methodology:
				AMS-I.A.
	• The system	is non-renev	wable generation	
	system			[Captive electricity with
	• Electricity g	eneration ca	pacity of the	natural gas]
	system is les	ss than or eq	ual to 15 MW	2006 IPCC Guidelines on
				National GHG Inventories
	fuel type	Diesel	Natural gas	for the source of EF of
	<u> </u>	0.0	0.46	natural gas.
	EF _{elec}	0.8 *1	0.46 *2	CDM Methodological tool
				"Determining the baseline
	*1 The most rece	ent value at t	he time of	efficiency of thermal or
	validation is appl	lied.		electric energy generation
	*2 The value is c	alculated w	ith the equation in	systems version 02.0" for
	the option a) a	above. The	the default efficiency for	
	default effective	e CO ₂ emi	off-grid power plants.	
	natural gas (0.0)543tCO ₂ /G.	J), and the most	t .
	efficient value	<u>,</u>		
	off-grid gas tu	÷		
	applied.			
$\eta_{PJ,i}$	Case 1)			Boiler which supplies heat
	Efficiency of be	oiler which	supplies heat to	to production line <i>i</i> :
	production line <i>i</i>	Specifications of the boiler		
				or factory test data of the
	Case 2)	boiler by the manufacturer		
	Efficiency of boiler which supplies heat to production line <i>i</i> or reference boiler, whichever is higher [dimensionless]			
				, Reference boiler:
				[Additional information]
				Market survey in
	Efficiency		η _{PJ,i}	Myanmar
	Boiler whi			
	supplies heat			

	production line isuppliesheatto>Referenceproduction line i as theboilercatalog valueBoilerwhich0.89suppliesheattoproduction line i<Reference	
	boiler In case that a new boiler, whose efficiency is higher than the efficiency fixed ex ante, is installed in production line i , $\eta_{PJ,i}$ is to be revised.	
η _{ΡJ,j}	Efficiency of project boiler <i>j</i> [dimensionless]	Specifications of the project boiler or factory test data of the project boiler by the manufacturer
η _{RE}	Efficiency of reference boiler [dimensionless] The default value of η_{RE} is set as 0.89	[Additional information] Market survey in Myanmar
SG _{PJ}	The specific gravity of saturated water under the project condition [kg/L]	Design value provided by the manufacturer
LHV _{PJ}	The latent heat of vaporization of water under the project condition (pressure, temperature) [GJ/kg]	Design value provided by the manufacturer