JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of the Union of Myanmar
Name of the methodology proponents	Kirin Holdings Company, Limited.
submitting this form	
Sectoral scope(s) to which the Proposed	3. Energy demand
Methodology applies	
Title of the proposed methodology, and	Introduction of cascade cooling system and/or
version number	temperature stratification tank at the beer
	factory, Version.01.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
Date of completion	15/07/2020

History of the proposed methodology

Version	Date	Contents revised
01.0	15/07/2020	First Edition

A. Title of the methodology

Introduction of cascade cooling system and/or temperature stratification tank at the beer factory Version.01.0

B. Terms and definitions

Terms	Definitions			
Cascade cooling system (CCS)	A system that arranges multiple cooling equipment (e.g.			
	chillers) connected in series to cool refrigerant in a			
	multistage manner from higher to lower temperature.			
Brine	A secondary refrigerant which exchanges heat with the			
	primary refrigerant and circulates through the			
	manufacturing process.			
Brine chiller	A chiller used for low temperature refrigeration utilizing			
	brine as the secondary refrigerant.			
Temperature stratification tank	A kind of brine tank, with a head set higher than all the			
	heads in the product cooling process, in which temperature			
	stratification is formed.			
Process pump	A brine pump which sends brine from brine tank to			
	demand side (e.g. heat exchanger with products to be			
	cooled).			
Chiller pump	A brine pump which sends brine from brine tank to chiller			
	(including cascade cooling system).			
Total efficiency of pump	An efficiency which is calculated by the efficiency of			
	motor multiplied by the efficiency of pump.			
	The efficiency of pump is calculated by the rated water			
	power output divided by rated shaft power output.			
Coefficient of Performance	Coefficient of Performance (COP) is defined as a value			
(COP)	calculated by dividing rated cooling capacity by rated			
	electricity consumption of chiller.			

C. Summary of the methodology

|--|

GHG emission	reduction	This methodology is applied to one of the following cases.				
measures		Case 1) Installation of both CCS and temperature				
		stratification tank				
		Case 2) Installation of only CCS				
		Case 3) Installation of only temperature stratification tank				
		GHG emission reduction measures ([A], [B], [C], [D]) are				
		realized for each equipment in the following cases.				
		Where GHG emission reductions are realized.				
			Chiller	Process pump	Chiller pump	
		Case 1 (2&3)	[A]	[B]*[C]	[B]*[D]	
		Case 2	[A]	[B]	[B]	
		Case 3 - [C] [D]				
		 [A] A cascade of are arranged if improves the effective system where be same cooling consumption and the same for the Since a large of install CCS, a linstall CCS, a linstalled on the temperature derefrigeration system with a sinelectricity consected to CO [C] By setting the head of the not released, consumption 	cooling syst in cascade ficiency of rine chiller output. If d conseque t of cold h e project co temperature arger heat he demand ifference stem, and th hall flow ra umption of CS and cons the head of whole cool which rest of proces	tem, in which mu to step down total cooling syst s are used in para t leads to redu ntly GHG emission eat required on the ndition and the re e difference is not exchanger than re d side. As a the becomes larger he same amount of the of brine. It lead f process pump sequently GHG er f the stratification ing process, the p ults in the redu s pump for	Itiple refrigerators the temperature, em compared to a llel to achieve the action of power ons. The demand side is ference condition. The demand side is ference condition. The demand side is ference condition. The demand side is ference system is result, the brine than reference of cold heat can be ds to reduction of and chiller pump missions.	

_

	[D] Since a volume of brine stored in temperature
	stratification tank is more than that stored in reference small
	brine tank, the operation of chiller pump can be controlled
	intermittently. Under the reference condition (small brine
	tank), chiller pump is usually operated 24 hours a day.
	Therefore, it leads to reduction of electricity consumption of
	chiller pump and consequently GHG emissions.
Calculation of reference	Reference emissions are calculated with the following
emissions	manners for each equipment in each case.
	Case 1) Installation of both CCS and temperature
	stratification tank
	- Brine chiller [A]
	Reference emissions are calculated with the cold heat amount
	produced by CCS, COP of the reference brine chiller and the
	emission factor for consumed electricity.
	- Process pump [B]*[C]
	Reference emissions are calculated with monitored electricity
	consumption of the project process pump, the ratio of total
	head which is needed for the process pump in the project
	system and the reference system, the ratio of the brine
	temperature difference under the project condition and the
	reference condition, the total efficiency of the project process
	pump and reference pump, and the emission factor for
	consumed electricity.
	- Chiller pump [B]*[D]
	Reference emissions are calculated with monitored average
	flow rate of brine, the ratio of the brine temperature difference
	under the reference condition and project condition, the
	density of brine, gravitational acceleration, total head under
	the reference condition, operation time (24 hours a day), the
	total efficiency of reference chiller pump, and the emission
	factor for consumed electricity.
	Case 2) Installation of only CCS
	- Brine Chiller [A]
	Reference emissions are calculated with the cold heat amount

r

	produced by CCS, COP of the reference brine chiller and the		
	emission factor for consumed electricity.		
	- Process pump [B]		
	Reference emissions are calculated with monitored electricity		
	consumption of the project process pump, the ratio of the		
	brine temperature difference under the project condition and		
	the reference condition, the total efficiency of the project		
	process pump and reference pump, and the emission factor for		
	consumed electricity.		
	- Chiller pump [B]		
	Reference emissions are calculated with monitored electricity		
	consumption of the project chiller pump, the ratio of the brine		
	temperature difference under the project condition and the		
	reference condition, the total efficiency of the project chiller		
	pump and reference pump, and the emission factor for		
	consumed electricity.		
	Case 3) Installation of only temperature stratification tank		
	- Process pump [C]		
	Reference emissions are calculated with monitored electricity		
	consumption of the project process pump for the temperature		
	stratification tank, total head which is needed for the process		
	pump in the project system and the reference system, and the		
	emission factor for consumed electricity.		
	- Chiller pump [D]		
	Reference emissions are calculated with monitored average		
	flow rate of brine, the density of brine, gravitational		
	acceleration, total head under the reference condition,		
	operation time (24 hours a day), the total efficiency of		
	reference chiller pump, and the emission factor for consumed		
	electricity.		
Calculation of project	Project emissions are calculated with the following manners		
emissions	for each equipment in each case.		
	<u>Case 1, 2, 3)</u>		
	- CCS		
	Project emissions are calculated with the monitored electricity		
	consumption of all the chillers of CCS and the emission factor		

	for consumed electricity.			
	- Process pump			
	Project emissions are calculated with the monitored electricity			
	consumption of process pump connected to demand side			
	and/or temperature stratification tank, and the emission factor			
	for consumed electricity.			
	- Chiller pump			
	Project emissions are calculated with the monitored electricity			
	consumption of chiller pump connected to CCS and/or			
	temperature stratification tank, and the emission factor for			
	consumed electricity.			
Monitoring parameters	Case 1) Installation of both CCS and temperature			
	stratification tank			
	• Electricity consumption of CCS			
	• Electricity consumption of process pump			
	• Electricity consumption of chiller pump			
	• Total flow of brine entering CCS			
	• Average flow rate of brine which is sent by chiller pump			
	• Operation days of cooling process			
	Case 2) Installation of only CCS			
	• Electricity consumption of CCS			
	• Electricity consumption of process pump			
	• Electricity consumption of chiller pump			
	• Total flow of brine entering CCS			
	Case 3) Installation of only temperature stratification tank			
	• Electricity consumption of process pump			
	• Electricity consumption of chiller pump			
	• Average flow rate of brine which is sent by chiller pump			
	• Operation days of cooling process			

D. Eligibility criteria				
This methodo	blogy is applicable to projects that satisfy all the following criteria.			
Critorion 1	The project to which this methodology is applied implements one of the			
Criterion I	following cases at the beer factory.			

_

	Case 1) Installation of both cascade cooling system and temperature					
	stratification tank					
	Case 2) Installation of only cascade cooling system					
	Case 3	Case 3) Installation of only temperature stratification tank				
	In eithe	In either case, the applicable technology is shown in Table 1 below.				
	Table 1: Applicable Technologies					
	No.	Technology	Applicable technology and criteria			
	1	Cascade	Newly installed or replace the existing multiple			
		cooling system	brine chillers.			
	2	Temperature	Replace the existing small brine tank.			
		stratification				
		tank				
Criterion 2	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is					
	zero.					
	*Criterion 2 is only applied to Case 1 or Case 2					
Criterion 3	A plan for prevention of releasing refrigerant used for project chiller is					
	prepared. In the case of replacing the existing chiller with the project chiller, a					
	plan for prevention of releasing refrigerant used in the existing chiller to the					
	air (e.g. re-use of the equipment) is prepared. Execution of this plan is					
	checke	d at the time of ve	erification, in order to confirm that refrigerant used			
	for the	existing one repla	aced by the project is prevented from being released			
	to the a	air.				
	*Criterion 3 is only applied to Case 1 or Case 2					

E. Emission Sources and GHG types

e.

Reference emissions			
Emission sources	GHG types		
Electricity consumption by reference brine chiller	CO ₂		
*Either Case 1 or Case 2			
Electricity consumption by reference pump (process pump and chiller	CO ₂		
pump)			
*Either Case 1 or Case 2 or Case 3			
Project emissions			
Emission sources	GHG types		

Electricity consumption by project cascade cooling system	CO ₂
* Either Case 1 or Case 2	
Electricity consumption by project pump (process pump and chiller	CO ₂
pump)	
*Either Case 1 or Case 2 or Case 3	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Net emission reductions are ensured for each equipment in the following manner.

Case 1) Installation of both CCS and temperature stratification tank

- Brine chiller

Reference emissions from cascade cooling system are calculated with the cold heat amount produced by CCS, COP of the reference brine chiller and the emission factor for consumed electricity.

The COP of reference brine chiller is conservatively set as a default value from collected data to ensure the net emission reductions.

In the reference scenario, the appropriate number of multiple brine chillers are installed depending on the situation so that the total cooling capacity is the same as the project CCS. Therefore, the COP of reference brine chiller is conservatively set high as a default value, which is described in Section I, to ensure the net emission reductions.

- Process pump

Reference emissions are calculated with monitored electricity consumption of the project process pump, the ratio of total head which is needed for the process pump in the project system and the reference system, the ratio of the brine temperature difference under the project condition and the reference condition, the total efficiency of the project process pump and reference pump, and the emission factor for consumed electricity.

The total efficiency of reference process pump is conservatively set high as a default value, which is described in Section I, to ensure the net emission reductions.

- Chiller pump

Reference emissions are calculated with monitored average flow rate of brine, the ratio of the brine temperature difference under the reference condition and project condition, the density of brine, gravitational acceleration, total head under the reference condition, operation time (24 hours a day), the total efficiency of reference chiller pump, and the emission factor for

consumed electricity.

The total efficiency of reference chiller pump is conservatively set high as a default value, which is described in Section I, to ensure the net emission reductions.

Case 2) Installation of only CCS

- Brine chiller

The same manner as Case 1 to ensure the net emission reductions is applied.

- Process pump

Reference emissions are calculated with monitored electricity consumption of the project process pump, the ratio of the brine temperature difference under the project condition and the reference condition, the total efficiency of the project process pump and reference pump, and the emission factor for consumed electricity.

The total efficiency of reference process pump is conservatively set high as a default value, which is described in Section I, to ensure the net emission reductions.

- Chiller pump

Reference emissions are calculated with monitored electricity consumption of the project chiller pump, the ratio of the brine temperature difference under the project condition and the reference condition, the total efficiency of the project chiller pump and reference pump, and the emission factor for consumed electricity.

The total efficiency of reference chiller pump is conservatively set high as a default value, which is described in Section I, to ensure the net emission reductions.

Case 3) Installation of only temperature stratification tank

- Process pump

Reference emissions are calculated with monitored electricity consumption of the project process pump, the ratio of total head which is needed for the process pump in the project system and the reference system, and the emission factor for consumed electricity.

- Chiller pump

Reference emissions are calculated with monitored average flow rate of brine, the density of brine, gravitational acceleration, total head under the reference condition, operation time (24 hours a day), the total efficiency of reference chiller pump, and the emission factor for consumed electricity.

The total efficiency of reference chiller pump is conservatively set high as a default value, which is described in Section I, to ensure the net emission reductions.

F.2. Calculation of reference emissions

Case 1) Installation of both CCS and temperature stratification tank	
	$RE_{p} = RE_{CCS,p} + RE_{proc-pump,p} + RE_{cziller-pump,p}$
Where	
RE_p	Reference emissions during the period p [tCO ₂ /p]
$RE_{CCS,p}$	Reference emissions from reference brine chiller during the period p
	$[tCO_2/p]$
$RE_{proc-pump,p}$	Reference emissions from reference process pumps during the period p
	$[tCO_2/p]$
$RE_{chiller-pump,p}$	Reference emissions from reference chiller pumps during the period p
	$[tCO_2/p]$

Measure 1: CCS [A]

$$RE_{CCS,p} = \sum_{i} (CH_{PJ,i,p} \div COP_{RE,i} \times EF_{elec})$$
$$CH_{PJ,i,p} = (T_{cooling-in,i} - T_{chilled-out,i}) \times Q_{PJ,i,p} \times SG_{PJ,i} \times SH_{PJ,i}$$

Where

$RE_{CCS,p}$	Reference emissions from reference brine chiller during the period p [tCO ₂ /p]
$CH_{PJ,i,p}$	Cold heat produced by the cascade cooling system i during the period p
	[MWh/p]
$COP_{RE,i}$	COP of reference chiller <i>i</i> [dimensionless]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
T _{cooling-in,i}	Input cooling brine temperature of project cascade cooling system <i>i</i> [degree
	Celsius]
T _{chilled-out,i}	Output chilled brine temperature of project cascade cooling system <i>i</i> [degree
	Celsius]
$Q_{PJ,i,p}$	Total flow of brine entering into project cascade cooling system <i>i</i> during the
	period $p [m^3/p]$
$SG_{PJ,i}$	Specific gravity of brine into project cascade system <i>i</i> [kg/m ³]
$SH_{PJ,i}$	Specific heat of brine into project cascade system <i>i</i> [MWh/kg/degree Celsius]
i	Identification number of project cascade cooling system and corresponding
	reference chiller

Measure 2: process pump [B]*[C]

$$RE_{proc-pump,p} = \sum_{j} \left(EC_{PJ,proc-pump,j,p} \times \frac{TH_{RE,j}}{TH_{PJ,j}} \times \frac{\Delta T_{PJ}}{\Delta T_{RE}} \times \frac{\eta_{PJ,proc-pump,j}}{\eta_{RE,pump}} \times EF_{elec} \right)$$

$$Where$$

$$RE_{proc-pump,p}$$

$$Reference emissions from reference process pumps during the period p$$

$$[tCO_2/p]$$

$$EC_{PJ,proc-pump,j,p}$$

$$Electricity consumption by project process pump j during the period p$$

	[MWh/p]
$TH_{RE,j}$	Total head of reference process pump j under the same conditions as the
	project [m]
$TH_{PJ,j}$	Total head of project process pump <i>j</i> under the project conditions [m]
ΔT_{PJ}	Temperature difference between brine which is sent to demand side
	from project temperature stratification tank and brine which is return
	from demand side to project temperature stratification tank [degree
	Celsius]
ΔT_{RE}	Temperature difference between brine which is sent to demand side
	from reference brine tank and brine which is return from demand side to
	reference brine tank [degree Celsius]
$\eta_{PJ,proc-pump,j}$	Total efficiency of project process pump <i>j</i> [dimensionless]
$\eta_{RE,pump}$	Total efficiency of reference pump [dimensionless]
EF _{elec}	CO2 emission factor for consumed electricity [tCO2/MWh]
j	Identification number of process pumps to circulate brine

Measure 3: chiller pump [B]*[D]

$$RE_{chiller-pump,p} = \sum_{k} (EC_{RE,ciller-pump,k,p} \times EF_{elec})$$

 $EC_{RE,chiller-pump,k,p} = WP_{RE,chiller-pump,k,p} \div \eta_{RE,pump} \times 24 \times 0D_{PJ,p}$

$$WP_{RE,chiller-pump,k,p} = Q_{PJ,chiller-pump,k,p} \times \frac{\Delta T_{PJ}}{\Delta T_{RE}} \times SG_{PJ,k} \times g \times TH_{RE,k} \div 3600 \div 10^{6}$$

Where

$RE_{chiller-pump,p}$	Reference emissions from reference chiller pumps during the period
	<i>p</i> [tCO ₂ /p]
$EC_{RE,chiller-pump,k,p}$	Electricity consumption by reference chiller pump k during the
	period p [MWh/p]
$WP_{RE,chiller-pump,k,p}$	Water power output of reference chiller pump k [MW]
$\eta_{RE,pump}$	Total efficiency of reference pump k [dimensionless]

$OD_{PJ,p}$	Operation days of the project process during the period $p \left[\frac{day}{p} \right]$
$Q_{PJ,chiller-pump,k,}$	p Average flow rate of brine which is sent by project chiller pump k
	during the period $p [m^3/s]$
ΔT_{PJ}	Temperature difference between brine which is sent to demand side
	from project temperature stratification tank and brine which is return
	from demand side to project temperature stratification tank [degree
	Celsius]
ΔT_{RE}	Temperature difference between brine which is sent to demand side
	from reference brine tank and brine which is return from demand
	side to reference brine tank [degree Celsius]
$SG_{PJ,k}$	Specific gravity of brine which is sent by project chiller pump k
	$[kg/m^3]$
g	Gravitational acceleration[m/s ²]
$TH_{RE,k}$	Total head of reference chiller pump k under the same conditions as
	the project [m]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
k	Identification number of chiller pump to circulate brine
Case 2) Installation	n of only CCS
	$RE_{p} = RE_{CCS,p} + RE_{proc-pump,p} + RE_{chiller-pump,p}$
Where	
RE_p	Reference emissions during the period p [tCO ₂ /p]
$RE_{CCS,p}$	Reference emissions from reference brine chiller during the period p
	$[tCO_2/p]$
$RE_{proc-pump,p}$	Reference emissions from reference process pumps during the period p
	$[tCO_2/p]$
$RE_{chiller-pump,p}$	Reference emissions from reference chiller pumps during the period p
	$[tCO_2/p]$

Measure 1: CCS [A]

The same equation as Case 1 to calculate $RE_{CCS,p}$ is applied.

Measure 2: Process pump [B]

$$RE_{proc-pump,p} = \sum_{j} \left(EC_{PJ,proc-pump,j,p} \times \frac{\Delta T_{PJ}}{\Delta T_{RE}} \times \frac{\eta_{PJ,proc-pump,j}}{\eta_{RE,pump}} \times EF_{elec} \right)$$

Where	
$RE_{proc-pump,p}$	Reference emissions from reference process pumps during the period p
	$[tCO_2/p]$
EC _{PJ,proc} -pump,j,p	Electricity consumption by project process pump j during the period p
	[MWh/p]
ΔT_{PJ}	Temperature difference between brine which is sent to demand side
	from project temperature stratification tank and brine which is return
	from demand side to project temperature stratification tank [degree
	Celsius]
ΔT_{RE}	Temperature difference between brine which is sent to demand side
	from reference brine tank and brine which is return from demand side to
	reference brine tank [degree Celsius]
$\eta_{PJ,proc-pump,j}$	Total efficiency of project process pump <i>j</i> [dimensionless]
$\eta_{RE,pump}$	Total efficiency of reference pump [dimensionless]
EF _{elec}	CO2 emission factor for consumed electricity [tCO2/MWh]
j	Identification number of process pumps to circulate brine

Measure 3: Chiller pump [B]

$$RE_{chiller-pump,p} = \sum_{k} \left(EC_{PJ,chiller-pump,k,p} \times \frac{\Delta T_{PJ}}{\Delta T_{RE}} \times \frac{\eta_{PJ,chiller-pump,k}}{\eta_{RE,pump}} \times EF_{elec} \right)$$

Where

$RE_{chiller-pump,p}$	Reference emissions from reference chiller pumps during the period p
	$[tCO_2/p]$
$EC_{PJ,chiller-pump,k,p}$	Electricity consumption by project chiller pump k during the period p
	[MWh/p]
ΔT_{PJ}	Temperature difference between brine which is sent to demand side
	from project temperature stratification tank and brine which is return
	from demand side to project temperature stratification tank [degree
	Celsius]
ΔT_{RE}	Temperature difference between brine which is sent to demand side
	from reference brine tank and brine which is return from demand side
	to reference brine tank [degree Celsius]
$\eta_{PJ,chiller-pump,k}$	Total efficiency of project chiller pump k [dimensionless]
$\eta_{RE,pump}$	Total efficiency of reference pump [dimensionless]
EF _{elec}	CO2 emission factor for consumed electricity [tCO2/MWh]
k	Identification number of chiller pumps to circulate brine

 $RE_p = RE_{proc-pump,p} + RE_{chiller-pump,p}$

Where

RE_p	Reference emissions during the period p [tCO ₂ /p]
$RE_{proc-pump,p}$	Reference emissions from reference process pumps during the period p
	$[tCO_2/p]$
$RE_{chiller-pump,p}$	Reference emissions from reference chiller pumps during the period p
	$[tCO_2/p]$

Measure 1: Process pump [C]

$$RE_{proc-pump,p} = \sum_{j} \left(EC_{PJ,proc-pump,j,p} \times \frac{TH_{RE,j}}{TH_{PJ,j}} \times EF_{elec} \right)$$

Where

$RE_{proc-pump,p}$	Reference emissions from reference process pumps during the period p
	$[tCO_2/p]$
$EC_{PJ,proc-pump,j,p}$	Electricity consumption by project process pump j during the period p
	[MWh/p]
$TH_{RE,j}$	Total head of project process pump j under the same conditions as the
	project [m]
$TH_{PJ,j}$	Total head of project process pump <i>j</i> under the project conditions [m]
EF _{elec}	CO2 emission factor for consumed electricity [tCO2/MWh]
j	Identification number of process pumps to circulate brine

Measure 2: Chiller pump [D]

$$RE_{chiller-pump,p} = \sum_{k} (EC_{RE,chiller-pump,k,p} \times EF_{elec})$$

$$\begin{split} & EC_{RE,chiller-pump,k,p} = WP_{RE,chiller-pump,k,p} \div \eta_{RE,pump} \times 24 \times OD_{PJ,p} \\ & WP_{RE,chiller-pump,k,p} = Q_{PJ,chiller-pump,k,p} \times SG_{PJ,k} \times g \times TH_{RE,k} \div 3600 \div 10^6 \end{split}$$

Where

$RE_{chiller-pump,p}$	Reference emissions from reference chiller pumps during the period
	<i>p</i> [tCO ₂ /p]
$EC_{RE,chiller-pump,k,p}$	Electricity consumption by reference chiller pump k during the
	period p [MWh/p]

$WP_{RE,chiller-pump,k,p}$	Water power output of reference chiller pump k [MW]
$\eta_{RE,pump}$	Total efficiency of reference pump k [dimensionless]
$OD_{PJ,p}$	Operation days of the project process during the period p [day/p]
$Q_{PJ,chiller-pump,k,p}$	Average flow rate of brine which is sent by project chiller pump k
	during the period $p [m^3/s]$
$SG_{PJ,k}$	Specific gravity of brine which is sent by project chiller pump k
	[kg/m ³]
g	Gravitational acceleration[m/s ²]
$TH_{RE,k}$	Total head of reference chiller pump k under the same conditions as
	the project [m]
EF _{elec}	CO2 emission factor for consumed electricity [tCO2/MWh]
k	Identification number of chiller pump to circulate brine

G. Calculation of project emissions

Case 1) Installation of both CCS and terms returns structification temb				
<u>Case 1) Installation of both CCS and temperature stratification tank</u>				
	$PE_p = PE_{CCS,p} + PE_{proc-pump,p} + PE_{chiller-pump,p}$			
Where				
PE_p	Project emissions during the period p [tCO ₂ /p]			
$PE_{CCS,p}$	Project emissions from cascade cooling system during the period p			
	[tCO ₂ /p]			
$PE_{proc-pump,p}$	Project emissions from project process pumps during the period p			
	$[tCO_2/p]$			
$PE_{chiller-pump,p}$	Project emissions from project chiller pumps during the period p [tCO ₂ /p]			
PE _{proc-pump,p} PE _{chiller-pump,p}	 [tCO₂/p] Project emissions from project process pumps during the period <i>p</i> [tCO₂/p] Project emissions from project chiller pumps during the period <i>p</i> [tCO₂/p] 			

Measure 1: CCS

$$PE_{CCS,p} = \sum_{i} (EC_{PJ,CCS,i,p} \times EF_{elec})$$

Where

PE _{CCS,p}	Project emissions from cascade cooling system during the period p [tCO ₂ /p]
EC _{PJ,CCS,i,p}	Electricity consumption by project cascade cooling system <i>i</i> during the
	period p [MWh/p]

 EF_{elec} CO₂ emission factor for consumed electricity [tCO₂/MWh]

Measure 2: Process pump

$$PE_{proc-pump,p} = \sum_{j} (EC_{PJ,proc-pump,j,p} \times EF_{elec})$$

Where	
PE _{proc-pump,p}	Project emissions from project process pumps during the period p [tCO ₂ /p]
EC _{PJ,proc} -pump,j,p	Electricity consumption by project process pump j during the period p
	[MWh/p]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
Measure 3: Chiller	r pump
	$PE_{chiller-pump,p} = \sum_{k} (EC_{PJ,chiller-pump,k,p} \times EF_{elec})$
Where	
PE _{pump,p}	Project emissions from project chiller pumps during the period <i>p</i> [tCO ₂ /p]
$EC_{PJ,chiller-pump}$	k,p Electricity consumption by project chiller pump k during the period p
	[MWh/p]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
Case 2) Installatio	n of only CCS
	$PE_p = PE_{CCS,p} + PE_{proc-pump,p} + PE_{chiller-pump,p}$
Where	
PE_p	Project emissions during the period p [tCO ₂ /p]
PE _{CCS,p}	Project emissions from cascade cooling system during the period <i>p</i> [tCO ₂ /p]
PE _{proc-pump,p}	Project emissions from project process pumps during the period p [tCO ₂ /p]
PE _{chiller} -pump,p	Project emissions from project chiller pumps during the period p [tCO ₂ /p]
Measure 1: CCS	
The same equation	as Case 1 to calculate PE _{CCS,p} is applied.
Measure 2: Proces	s pump
The same equation	as Case 1 to calculate $PE_{proc-pump,p}$ is applied.
Measure 3: Chiller	r pump
The same equation	as Case 1 to calculate $PE_{chiller-pump,p}$ is applied.
Case 3) Installatio	n of only temperature stratification tank
	$PE_p = PE_{proc-pump,p} + PE_{chiller-pump,p}$
Where	

PE_p	Project emissions during the period p [tCO ₂ /p]			
$PE_{proc-pump,p}$	Project emissions from project process pumps during the period p			
	$[tCO_2/p]$			
$PE_{chiller-pump,p}$	Project emissions from project chiller pumps during the period p [tCO ₂ /p]			

Measure 1: Process pump

The same equation as Case 1 to calculate $PE_{proc-pump,p}$ is applied.

Measure 2: Chiller pump

The same equation as Case 1 to calculate $PE_{chiller-pump,p}$ is applied.

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$			
Where				
ER_p	Emission reductions during the period p [tCO ₂ /p]			
RE_p	Reference emissions during the period p [tCO ₂ /p]			
PE_p	Project emissions during the period p [tCO ₂ /p]			

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity	[Grid electricity]
	[tCO ₂ /MWh]	PDD of the most
		recently registered
	When project cascade cooling system and/or	CDM project hosted in
	project pumps consume only grid electricity or	Myanmar or the latest
	captive electricity, the project participant	version of the "Tool to
	applies the CO ₂ emission factor respectively.	calculate the emission
		factor for an electricity
	When project cascade cooling system and/or	system" under the
	project pumps may consume both grid	CDM at the time of
	electricity and captive electricity, the project	validation.
	participant applies the CO ₂ emission factor	

with lower value.	[Captive electricity]
	For the option a)
[CO ₂ emission factor]	Specification of the
For grid electricity: The most recent value	captive power
available from the source stated in this table at	generation system
the time of validation	provided by the
	manufacturer (η_{elec})
For captive electricity, it is determined based	[%]).
on the following options:	CO ₂ emission factor of
	the fossil fuel type used
a) Calculated from its power generation	in the captive power
efficiency (η_{elec} [%]) obtained from	generation system
manufacturer's specification	$(EF_{fuel} [tCO_2/GJ])$
The power generation efficiency based on	
lower heating value (LHV) of the captive	For the option b)
power generation system from the	Generated and supplied
manufacturer's specification is applied;	electricity by the
	captive power
$EF_{elec} = 3.6 \times \frac{1}{\eta_{elec}} \times EF_{fuel}$	generation system
	$(EG_{PJ,p} [MWh/p]).$
b) Calculated from measured data	Fuel amount consumed
The power generation efficiency calculated	by the captive power
from monitored data of the amount of fuel	generation system
input for power generation $(FC_{PJ,p})$ and the	$(FC_{PJ,p}$ [mass or
amount of electricity generated $(EG_{PJ,p})$	weight/p]).
during the monitoring period p is applied. The	Net calorific value
measurement is conducted with the monitoring	(NCV _{fuel} [GJ/mass or
equipment to which calibration certificate is	weight]) and CO ₂
issued by an entity accredited under	emission factor of the
national/international standards;	fuel (EF_{fuel} [tCO ₂ /GJ])
	in order of preference:
$Er_{elec} = rC_{PJ,p} \times NCV_{fuel} \times Er_{fuel} \times \frac{1}{EG_{PJ,p}}$	1) values provided by
Where:	the fuel supplier;
NCV _{fuel} : Net calorific value of consumed	2) measurement by the
fuel [GJ/mass or weight]	project participants;
	3) regional or national
Note:	default values;

	In case the capti	ve electricity	4) IPCC default values	
	system meets all	provided in tables 1.2		
	the value in the	and 1.4 of Ch.1 Vol.2		
	to EF_{elec} dependence	of 2006 IPCC		
	type.	Guidelines on National		
		GHG Inventories.		
	• The system	Lower value is applied.		
	• Electricity	generation ca	pacity of the	[Captive electricity
	system is le	se than or ea	ual to 15 MW	with diesel fuel]
	system is it	ss than or eq		CDM approved small
		Diesel		scale methodology:
	fuel type	fuel	Natural gas	AMS-I.A.
	EF _{elec}	0.8 *1	0.46 *2	
				[Captive electricity
	*1 The most rec	ent value at t	with natural gas]	
	validation is app	olied.		2006 IPCC Guidelines
	*2 The value is	calculated w	ith the equation in	on National GHG
	the option a) abo	ove. The low	er value of default	Inventories for the
	effective CO ₂ e	mission facto	or for natural gas	source of EF of natural
	(0.0543tCO ₂ /GJ), and the most efficient value of default efficiency for off-grid gas turbine			gas.
				CDM Methodological
	systems (42%) a	are applied.	tool "Determining the	
				baseline efficiency of
				thermal or electric
				energy generation
				systems version 02.0"
				for the default
				efficiency for off-grid
				power plants.
COP _{RE,i}	COP of reference	e brine chille	er i	The default COP values
	[dimensionless]			are derived from the
	The COP of the reference brine chiller <i>i</i> is set			result of survey on
				COP of brine chillers
	as the default va	lue in the fol	from manufacturers.	
			The default COP values	
	[Default COP va	should be revised if		

	COP	_{RE,i} [-]	4.34		necessary from survey
					conducted by IC or
					project participants
	Input cooling	hrine te	mperature o	f project	Specifications of
¹ cooling–in,i	cascade cooling	evetom i	Ideoree Cels	inel	project cascade cooling
	caseade cooning	system t	[degree Cers	lusj	system i provided by
					manufacturar
	Output chilled	bring to	mporatura	f project	Spacifications of
¹ chilled–out,i	Output chilled	orine te		ing]	specifications of
	cascade cooning	system <i>i</i>	[degree Cers	lusj	project cascade cooling
					system <i>i</i> provided by
<u> </u>	Q	6.1. '	• , •	. 1	
SG _{PJ,i}	Specific gravity	of brine	e into projec	t cascade	Specific value provided
	system <i>i</i> [kg/m ³]				by the manufacturer
$SG_{PJ,k}$	Specific gravity	of bri	ne which is	sent by	Specific value provided
	project chiller pu	.mp <i>k</i> [k	g/m³]		by the manufacturer
SH _{PLi}	Specific heat of brine into project cascade			Specific value provided	
	system <i>i</i> [MWh/kg /degree Celsius]				by the manufacturer
$TH_{RE,j}$	Total head of reference process pump <i>j</i> under				Specific value provided
	the same conditions as the project [m]				by the manufacturer
$TH_{RE,k}$	Total head of reference chiller pump k under			Specific value provided	
	the same conditions as the project [m]			by the manufacturer	
$TH_{PJ,j}$	Total head of project process pump j under the			Specific value provided	
	same conditions	as the pr	roject [m]		by the manufacturer
ΔT_{PJ}	Temperature diff	ference b	etween brine	which is	Specific value provided
	sent to demand	side from	m project ter	nperature	by the manufacturer
	stratification tar	nk and l	brine which	is return	
	from demand	side to	project ter	nperature	
	stratification tan	k [degre	e Celsius]		
ΔT_{RE}	Temperature diff	ference b	etween brine	which is	The default value is
	sent to demand	side fror	n reference b	orine tank	derived from the
	and brine which	is return	n from demar	nd side to	interview of
	reference brine tank [degree Celsius]				manufacturer and the
					result of survey on
	The default value is set conservatively as in			specification of brine	
	the following table.				chillers from

		manufacturers.
	[Default ΔT_{RE}]	In the brine chiller
		introduced in the
	ΔI_{RE} [degC] 5	cooling process in
		beverage production,
		the brine temperature
		difference between the
		inlet and outlet is
		usually from 0 degC to
		5 degC.
		Therefore ΔT_{RE} is
		conservatively set to 5
		degC.
$\eta_{PJ,proc-pump,j}$	Total efficiency of project process pump j	Specifications of
	[dimensionless]	project process pump j
		prepared for the
		quotation or factory
		acceptance test data by
		manufacturer.
$\eta_{PJ,chiller-pump,k}$	Total efficiency of project chiller pump k	Specifications of
	[dimensionless]	project chiller pump k
		prepared for the
		quotation or factory
		acceptance test data by
		manufacturer.
$\eta_{RE,pump}$	Total efficiency of reference pump	The default $\eta_{RE,pump}$
	[dimensionless]	values are derived from
		the following document;
	The default value is set conservatively as in	Efficiency of pump:
	the following table.	Japanese Industrial
		Standard JIS B 8313
	[Default $\eta_{RE,pump}$]	"End suction centrifugal
	$\eta_{\rm RE}$ memor [-] 0.736	pumps", in which the
	TRE, pump 1 1 0.130	highest value is 0.765.
		Efficiency of motor:
	* $\eta_{RE,pump}$ is calculated by the following	Final Reports on the Top
	equation.	Runner Target Product

	$\eta_{RE,pump} = efficiency of pump$	Standards (Final Report
	imes efficiency of motor	by Three-phase
	$efficiency \ of \ pump \ = \ 0.765$	Induction Motor
	efficiency of motor = 0.962	Evaluation Standards
		Subcommittee, Energy
		Efficiency Standards
		Subcommittee of the
		Advisory Committee for
		Natural Resources and
		Energy), in which the
		highest value is 0.962.
g	Gravitational acceleration[m/s ²]	Theoretical value.
	[Default value of gravitational acceleration]	
	$a \left[m/c^2 \right] = 0.8$	