Joint Crediting Mechanism Approved Methodology MM_AM003 "Energy Saving by Introduction of High Efficiency Once-through Boiler"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Once-through Boiler, Version.01.0

B. Terms and definitions

Terms	Definitions	
Once-through boiler	A once-through boiler is a boiler without recirculation	
	where water flows through the economizer, furnace wall,	
	and evaporating and superheating tubes, sequentially.	
	Once-through boiler is used to supply heat in factory and	
	commercial facility.	
Periodical check	Periodical check is a scheduled examination of the proj	
	boiler conducted by manufacturer or agent who is	
	authorized by the manufacturer in order to maintain	
	performance of the boiler.	
Boiler efficiency	Boiler efficiency is the percentage of heat quantity used to	
	generate steam against total heat quantity provided by a	
	fuel.	

C. Summary of the methodology

Items			Summary
GHG en	nission	reduction	This methodology involves the installation of high efficiency
measures 0			once-through boiler. Compared with the water tube boilers and
			fire tube boilers which dominate Myanmar market, the
			efficiency of once-through boiler is higher and fuel
			consumption is less. Thus the introduction of once-through
			boiler will contribute to the GHG emission reductions.
Calculatio	on of	reference	Reference emissions are calculated based on the efficiency of
emissions			the boiler currently dominant in the Myanmar market.

	Conservative estimation of reference emissions is made by
	taking the following points into consideration: (i) lower CO ₂
	emission factor is selected from IPCC guideline with regard to
	the fuel used in reference boiler, and (ii) higher efficiency is
	applied for the reference boiler especially in low load range.
Calculation of project	Project emissions are calculated on the basis of monitored fuel
emissions	consumption and emission factor of the fuel of the project
	boiler.
Monitoring parameters	The amount of fuel consumption

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project boiler is a once-through boiler with a rated capacity of 7 ton/hour
	per unit or less (equivalent evaporation)
Criterion 2	Periodical check and maintenance by the manufacturer of boiler or authorized
	agent is implemented at least once a year.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fuel consumption by reference boiler CO ₂		
Project emissions		
Emission sources GHG types		
Fuel consumption by project boiler	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on the efficiency of the water tube and fire tube boilers which dominate the boiler market for industries in Myanmar. The fuel types widely used in Myanmar are oil, followed by coal. Natural gas is mainly used in power sector and not distributed to private industry sector.

In order to ensure net emission reductions, a higher efficiency of the reference boiler (89%) is adopted to calculate the reference emissions. In addition, 1) compared with reference boiler (oil and gas type), once-through boiler (project boiler, oil and gas type) can maintain high efficiency even at low load range, which improves the operating efficiency of project boiler, and 2) compared with reference boiler (coal), operational efficiency of the project boiler is higher due to better combustion control, which also ensures the net emission reductions. In addition, to calculate the reference emission conservatively, lower emission factor stated in 2006 IPCC guidelines is adopted to secure the net emission reductions.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \sum_{j} \left(FC_{p,i,j,PJ} \times NCV_{i,j,PJ} \times EF_{RE} \times \frac{\eta_{i,PJ}}{\eta_{RE}} \right)$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $FC_{p,i,j,PJ}$: The amount of fuel consumption of project boiler i for the fuel type j during the period p [mass or volume unit/p]

 $NCV_{i,j,PJ}$: Net calorific value of fuel used by project boiler i for the fuel type j [GJ/mass or volume unit]

EF_{RE}: CO₂ emission factor of fuel used by reference boiler [tCO₂/GJ]

 $\eta_{i,PJ}$: Efficiency of project boiler i [-] η_{RE} : Efficiency of reference boiler [-]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} \sum_{j} (FC_{p,i,j,PJ} \times NCV_{i,j,PJ} \times EF_{i,j,PJ})$$

PE_p : Project emissions during the period p [tCO₂/p]

 $FC_{p,i,j,PJ}$: The amount of fuel consumption of project boiler i for the fuel type j during the period p [mass or volume unit]

 $NCV_{i,j,PJ}$: Net calorific value of fuel used by project boiler i for the fuel type j [GJ/mass or volume unit]

 $EF_{i,i,PI}$: CO_2 emission factor of fuel used by project boiler i for the fuel type j [tCO₂/GJ]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 $\operatorname{ER}_{\mathbf{p}}$: Emission reductions during the period p [tCO₂/p] $\operatorname{RE}_{\mathbf{p}}$: Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$NCV_{i,j,PJ}$	Net calorific value of fuel used by project boiler	In order of preference:
	i for the fuel type j [GJ/mass or volume unit]	(1) Net calorific value
		(lower heating value)
		provided by fuel supplier or
		boiler manufacturer, (2)
		IPCC default values at the
		lower limit in Table 1.2 of
		Chapter 1 of Vol. 2 of the
		"2006 IPCC Guidelines for
		National GHG Inventories"
$EF_{i,j,PJ}$	CO ₂ emission factor of fuel used by the project	IPCC default value from
	boiler i for the fuel type j [tCO ₂ /GJ]	Table 1.4 of Chapter 1 of
		Vol. 2 of the "2006 IPCC
		Guidelines for National
		GHG Inventories"
EF_{RE}	CO ₂ emission factor of fuel used by the reference	IPCC default value from
	boiler [tCO ₂ /GJ]	Table 1.4 of Chapter 1 of
	In case the project boiler replaces an existing	Vol. 2 of the "2006 IPCC
	boiler, or a planned boiler of which plan has been	Guidelines for National
	officially approved such as through boiler	GHG Inventories"
	installation permit or initial environmental	
	examination/ environmental impact assessment,	
	the fuel of the existing or planned boiler is	
	applied.	
	Otherwise, the value is the same as $EF_{i,j,PJ}$.	

$\eta_{i,PJ}$	Efficiency of project boiler i [-]	Specifications of the project
		boiler or factory test data of
		the project boiler by the
		manufacturer
η_{RE}	Efficiency of reference boiler [-]	[Additional information]
	The default value of η_{RE} is set as 0.89.	Market survey in Myanmar

History of the document

Version	Date	Contents revised
01.0	16 January 2020	Electronic decision by the Joint Committee
		Initial approval.