Joint Crediting Mechanism Approved Methodology MM_AM004 "Installation of rice husk power plant in Ayeyarwady region"

A. Title of the methodology

Installation of rice husk power plant in Ayeyarwady region, version 01.0

B. Terms and definitions

Terms	Definitions			
Rice husk power	A biomass power plant which consists of a biomass boiler, a generator			
plant	set (genset) and auxiliary equipment. The biomass boiler generates			
	heat by combusting rice husks as its fuel, and the genset uses the heat			
	to generate electricity.			
Power generation	Electric output that a genset can generate, which is the installed/rated			
capacity	capacity indicated by the manufacturer.			
Power generation	Ratio of rated electric output to fuel input, which is the theoretical			
efficiency	efficiency indicated by the manufacturer. It may also be the product of			
	heat generation efficiency of a biomass boiler (net heat output / fuel			
	input) and power generation efficiency of a genset (rated electric			
	output / heat input), each of which is the theoretical efficiency			
	indicated by the manufacturer.			
	Power			
	generation Rated electric output			
	efficiency Fuel input			
	[%]			
	or			
	Net heat output _ Rated electric output			
	Fuel input			
Recipient facility	A facility (e.g., building, plant, etc.) or a cluster of facilities to which			
	electricity generated by a rice husk power plant is supplied.			

C. Summary of the methodology

Items	Summary			
GHG emission reduction	GHG emission reductions can be achieved through the			
measures	displacement of grid and/or captive electricity by installation and			
	operation of a rice husk power plant.			
Calculation of reference	Reference emissions are calculated from net electricity			
emissions	generation by the project which replaces grid electricity and/or			
	captive use where the project is implemented during a given time			
	period.			
Calculation of project	Project emissions are determined to be zero in this methodology.			
emissions				
Monitoring parameters	Amount of electricity generated by a rice husk power plant.			

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Critorian 1	A rice husk power plant is installed in Ayeyarwady region and supplies				
Criterion I	electricity to the national grid and/or a recipient facility.				
	The power ge	neration capacity and power ge	eneration efficiency of	of a rice husk	
	power plant n	power plant meet the following thresholds. To demonstrate or calculate these			
	values, values stated in catalogs or other information prepared by its				
	manufacturer may be used.				
Criterion 2		Item	Threshold		
		Power generation capacity	15 MW or less		
		Power generation efficiency	16.0 % or more		
				ı I	

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Grid electricity and/or captive power generation	CO ₂		
Project emissions			
Emission sources	GHG types		

N/A	N/A

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on the net amount of electricity generated by a rice husk power plant which replaces grid electricity and/or captive use where the project is implemented during a given time period.

In general, auxiliary equipment of a rice husk power plant, when in operation, consumes electricity generated by the power plant itself, but all the auxiliary equipment is not always in operation, nor do they operate at maximum load. To ensure conservativeness in this methodology, it is assumed that all the auxiliary equipment operates all the time at theoretically maximum load during a given monitoring period. Hence, the net amount of electricity generated by the rice husk power plant can be calculated lower than the actual case, which leads to net emission reductions.

F.2. Calculation of reference emissions

$$RE_p = NEG_p \times EF_{RE,elec}$$

Where

RE_p	:	Reference emissions during the period p [tCO ₂ /p]
NEG_p	:	Net amount of electricity generated by the rice husk power plant during the
		period <i>p</i> [MWh/p]
$EF_{RE,elec}$:	CO ₂ emission factor of the national grid or that for consumed electricity in

Determination of *NEG*_p

$$NEG_p = EG_p - EC_{aux,p}$$

Where

EG_p	:	Amount of electricity generated by the rice husk power plant during the
		period p [MWh/p]
$EC_{aux,p}$:	Amount of electricity consumed by the auxiliary equipment of the rice husk
		power plant during the period p [MWh/p]

Determination of $EC_{aux,p}$

$$EC_{aux,p} = RPC_{aux} \times 24(hours/day) \times D_p$$

Where

- *RPC_{aux}* : Total rated power consumption of the auxiliary equipment of the rice husk power plant [MW]
- D_p : Number of days during the period p [day/p]

In case where the rice husk power plant is connected to both the national grid and a recipient facility, and the amount of electricity generated by the rice husk power plant and supplied to the national grid is identified, the following equation may be used for calculating the reference emissions by applying the value of $EF_{RE,elec}$ separately to each amount of electricity as instructed in the section I of this methodology.

$$\begin{aligned} RE_p &= RE_{grid,p} + RE_{fac,p} \\ RE_{grid,p} &= ES_{grid,p} \times EF_{RE,elec} \\ RE_{fac,p} &= (NEG_p - ES_{grid,p}) \times EF_{RE,elec} \end{aligned}$$

Where

RE_p	:	Reference emissions during the period p [tCO ₂ /p]
$RE_{grid,p}$:	Reference emissions from grid electricity generation during the period p
		$[tCO_2/p]$
$RE_{fac,p}$:	Reference emissions from electricity use in the recipient facility during the
		period p [tCO ₂ /p]
$ES_{grid,p}$:	Amount of electricity supplied by the rice husk power plant to the national
		grid during the period p [MWh/p]
NEG_p	:	Net amount of electricity generated by the rice husk power plant during the
		period p [MWh/p]
$EF_{RE,elec}$:	CO_2 emission factor of the national grid or that for consumed electricity in
		the recipient facility [tCO ₂ /MWh]

G. Calculation of project emissions

Project emissions are determined to be zero in this methodology.

$$PE_p = 0$$

Where

 PE_p : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

Where

ER_p	:	Emission reductions during the period $p [tCO_2/p]$
RE_p	:	Reference emissions during the period $p \ [tCO_2/p]$
PE_p	:	Project emissions during the period p [tCO ₂ /p]

I.	Data and	parameters	fixed	ex	ante
		P			

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$EF_{RE,elec}$	CO ₂ emission factor of the national grid or	For grid electricity: PDD of
	that for consumed electricity in the recipient	the most recently registered
	facility [tCO ₂ /MWh].	CDM project hosted in
		Myanmar or the latest version
	In case the rice husk power plant only	of the "Tool to calculate the
	connected to the national grid, the project	emission factor for an
	participant applies CO ₂ emission factor for	electricity system" under the
	the grid electricity. In other cases (i.e. the	CDM at the time of validation.
	rice husk power plant is connected to the	For captive electricity with

recipier	nt facility), the project participant	diesel fuel:
applies	CO ₂ emission factor as following:	small scale
		AMS-I.A.
If the re	ecipient facility in a proposed project	For captive
activity	is connected only to the grid	natural gas:
electric	ity, the project participant applies	Guidelines
CO ₂ en	nission factor for the grid electricity.	Inventories
		EF of natura
If the re	ecipient facility in a proposed project	Methodolog
activity	is connected only to captive	"Determinin
electric	ity, the project participant applies the	efficiency o
CO ₂ en	hission factor with lower value except:	electric ener
• Th	e case when the rice husk power plant	systems ver
CO	nnected only to the recipient facility	default effic
wh	ich is connected only to captive	power plant
ele	ectricity. In this case, the project	
par	rticipant applies the CO2 emission	
fac	ctor for captive electricity;	
or		
• Th	e case when the rice husk power plant	
is o	connected to both the national grid and	
the	e recipient facility, and the amount of	
ele	ectricity generated by the rice husk	
po	wer plant and supplied to the national	
gri	d is identified. In this case, the project	
par	rticipant may apply the CO ₂ emission	
fac	ctors respectively as following:	
≻	For the amount of electricity supplied	
	by the rice husk power plant to the	
	national grid during the period p	
	$(ES_{grid,p} [MWh/p])$, the project	
	participant applies CO ₂ emission	
	factor for the grid electricity.	
≻	For the rest of the amount supplied	
	by the rice husk power plant during	
	the period p ($NEG_p - ES_{grid,p}$	
	[MWh/p]), the project participant	

liesel fuel: CDM approved mall scale methodology AMS-I.A. For captive electricity with natural gas: 2006 IPCC Guidelines on National GHG nventories for the source of EF of natural gas, and CDM Methodological tool Determining the baseline efficiency of thermal or electric energy generation systems version02.0" for the default efficiency for off-grid applies CO₂ emission factor for captive electricity.

If that the recipient facility in a proposed project activity is connected both grid electricity and captive electricity or that the recipient facility in a proposed project activity is connected neither the national grid nor captive power generator, the project participant applies the CO₂ emission factor with lower value, except the case where the amount of electricity generated by the rice husk power plant and supplied to the national grid is identified. In this case, the project participant may apply the CO₂ emission factors respectively as following:

-For the amount of electricity supplied by the rice husk power plant to the national grid during the period p ($ES_{grid,p}$ [MWh/p]), the project participant applies CO₂ emission factor for the grid electricity. -For the rest of the amount supplied by the rice husk power plant during the period p($NEG_p - ES_{grid,p}$ [MWh/p]), the project

participant applies CO₂ emission factor according to the instruction above.

[CO₂ emission factor]

For grid electricity: The value available from PDD of the most recently registered CDM project hosted in Myanmar or the calculated value using the latest version of the "Tool to calculate the emission factor for an electricity system" under the CDM at the time of validation. For captive electricity: In case the captive

	electricity is solely generated by diesel fuel,		
	apply 0.8 [tCO ₂ /MWh] ^{*1} , otherwise		
	(regardless of the energy sources) apply 0.46		
	[tCO ₂ /MWh] *2		
	*1 The most recent value available from		
	CDM approved small scale methodology		
	AMS-I.A. at the time of validation is applied.		
	*2 The value is calculated with the lower		
	value of default effective CO ₂ emission		
	factor for natural gas (0.0543tCO ₂ /GJ) and		
	the default efficiency for advanced off-grid		
	gas turbine systems (42%).		
<i>RPC_{aux}</i>	Total rated power consumption of the	Specification of all the	
	auxiliary equipment of the rice husk power	auxiliary equipment included	
	plant [MW]	in the rice husk power plant,	
		provided by the manufacturer.	

History of the document

Version	Date	Contents revised
01.0	16 January 2020	Electronic decision by the Joint Committee
		Initial approval.