${\bf Joint~Crediting~Mechanism~Approved~Methodology~LA_AM003} \\ {\bf ``Installation~of~energy~efficient~transformers~in~a~power~distribution~grid''}$

A. Title of the methodology

Installation of energy efficient transformers in a power distribution grid, Version 1.0

B. Terms and definitions

Terms	Definitions
Power distribution grid	The portion of the electric system that is dedicated to
	delivering electricity to the end-users.
No-load losses	Losses of electricity due to transformer core magnetizing
	or energizing. These losses occur whenever a transformer
	is energized and remain constant regardless of the amount
	of electricity flowing through it.
Load losses	Losses of electricity due to resistance in the electrical
	winding of the transformer. Contrary to no-load losses, the
	amount of load losses depends on the electrical current.
	These losses include eddy current losses in the primary
	and secondary conductors of the transformer. These losses
	occur when the electricity flows through the transformer.

C. Summary of the methodology

	Items		Summary
GHG	emission	reduction	Installation of energy efficient transformers (transformers with
measur	es		amorphous metal core) in a power distribution grid reduces
			no-load losses by transformers, which leads to reduction of
			losses for grid electricity, thus reduction of GHG emissions.
Calculo	ation of	reference	Reference emissions are calculated by no-load losses of the
emissic	ons		reference transformer, blackout rate and CO ₂ emission factor
			of the grid.

Calculation of proje	ct Project emissions are calculated by no-load losses of the	
emissions project transformer, maximum allowable uncertainty for the		
	no-load losses of the project transformer, blackout rate ar	
	CO ₂ emission factor of the grid.	
Monitoring parameters	Energizing time of the project transformer	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Single-phase and/or three-phase oil-immersed transformer with amorphous
	metal core is installed in the distribution grid.
	Load losses of the project transformer determined in line with IEC 60076-1 or
Criterion 2	national/industrial standards complying with IEC 60076-1 is equal or smaller
	than the standard values or specification values of load loss, required by the
	power company of the grid where the project transformer is installed,
	corresponding to its capacity and number of phases.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
No-load losses of grid electricity by reference transformers	CO_2	
Project emissions		
Emission sources	GHG types	
No-load losses of grid electricity by project transformers	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Transformer with silicon steel core is commonly installed in Lao PDR. On the other hand, transformer with amorphous metal core has been installed to a very limited extent. Also, power companies in Lao PDR have the standard for no-load losses when procuring transformers, and such no-load losses are established on the basis of transformer with silicon steel core.

Reference emissions are calculated by applying no-load loss of the reference transformer and blackout rate conservatively. The no-load losses of the reference transformer are determined *ex ante* by applying the lower value of the latest standard for no-load losses or the specification value of no-load losses where applicable, required by the power companies where the project transformer is installed. Blackout rate varies among the regions, and it is improving year by year. The default value of blackout rate in Lao PDR is set by selecting the worst (highest) value among all areas.

F.2. Calculation of reference emissions

The reference emissions, RE_p, during the period p are given by:

$$RE_p = \sum_{i} (NLL_{RE,i,j,k} \times H_{i,p}) \times (1 - Br_p) \times EF_{grid} \times 10^{-6}$$

Where:

 RE_p : Reference emissions during the period p [tCO₂/p]

i : Identification number of the reference transformer

j: Identification number of the power company where the transformer i is

installed

k : Index which represents type of the reference transformer defined by its

capacity and number of phases

 $NLL_{RE.i.l.k}$: No-load losses of the reference transformer i of capacity category k for the

power company *j* [W]

 $H_{i,p}$: Energizing time of the project transformer i during the period p [hour/p]

 $\operatorname{Br}_{\operatorname{p}}$: Blackout rate during the period p [fraction]

 EF_{grid} : CO_2 emission factor of the grid [t CO_2 /MWh]

G. Calculation of project emissions

The project emissions, PE_p , during the period p are given by:

$$PE_{p} = \sum_{i} [NLL_{PJ,i,j,k} \times (1 + UNC_{i}) \times H_{i,p}] \times (1 - Br_{p}) \times EF_{grid} \times 10^{-6}$$

Where:

PE_p : Project emissions during the period p [tCO₂/p]

i : Identification number of the project transformer

: Identification number of the power company where the transformer i is

installed

k	: Index which represents type of the project transformer defined by its
	capacity and number of phases
$NLL_{PJ,i,j,k}$: No-load losses of the project transformer i of capacity category k for the
	power company j [W]
UNC _i	: Maximum allowable uncertainty for the no-load losses of the project
	transformer i [fraction]
$H_{i,p}$: Energizing time of the project transformer i during the period p [hour/p]
Br_p	: Blackout rate during the period p [fraction]
EF _{grid}	: CO ₂ emission factor of the grid [tCO ₂ /MWh]

H. Calculation of emissions reductions

The emission reductions, ER_p , during the period p are given by:

 $ER_p = RE_p - PE_p$

Where:

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
NLL _{RE,i,j,k}	No-load losses of the reference transformer i	The latest standard for
	of capacity category k for the power company	no-load loss required by the
	j.	power companies, or the
	The no-load losses of the reference	specification value of
	transformer i are determined ex ante by	no-load losses set by the
	applying the lower value of the latest standard	power companies
	for no-load losses or the specification value of	
	no-load losses where applicable, required by	
	the power companies where the project	
	transformer is installed, corresponding to the	
	capacity and number of phases of the project	
	transformer i.	

NLL _{PJ,i,j,k}	No-load losses of the project transformer <i>i</i> of	Values sourced from
1 ,,1,,,10	capacity category k for the power company j .	manufacturer's performance
		test report measured at the
		time of pre-delivery
		inspection or those defined
		in the tender specification of
		the power companies
Br_p	Blackout rate during the period <i>p</i> .	Data obtained from power
		companies
	Default value: 1.55%	
UNC _i	Maximum allowable uncertainty for the	Manufacturer's performance
	no-load losses of the project transformer i .	test report measured at the
		time of pre-delivery
		inspection or 0.15 as
		specified in IEC 60076 in
		case the value is not
		specified in the performance
		test report
EF _{grid}	CO ₂ emission factor of the grid.	The most recent value
		announced by the Ministry
		of Natural Resources and
		Environment (MONRE),
		DNA for CDM available at
		the time of validation is
		applied and fixed for the
		monitoring period thereafter,
		unless otherwise instructed
		by the Joint Committee

History of the document

Version	Date	Contents revised
01.0	10 August 2018	JC4, annex 2 Initial approval.