JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Lao People's Democratic Republic
Name of the methodology proponents submitting this form	Toyota Tsusho Corporation Internet Initiative Japan Inc. Mitsubishi UFJ Morgan Stanley Securities Co., Ltd
Sectoral scope(s) to which the Proposed Methodology applies	3. Energy demand
Title of the proposed methodology, and version number	Installation and operation of energy-efficient data center (DC) in the Lao PDR, Version 01.0
List of documents to be attached to this form (please check):	\square The attached draft JCM-PDD:
$\boxed{Z A d d i t i o n a l ~ i n f o r m a t i o n ~}$	

History of the proposed methodology

Version	Date	Contents revised
01.0	$27 / 07 / 2016$	First edition

A. Title of the methodology

Installation and operation of energy-efficient data center (DC) in the Lao PDR, Version 01.0

B. Terms and definitions

Terms	Definitions
Project Data Center (Project DC)	Freight container which is transportable by container truck/trailer and is outfitted with components including server racks, power supplies, communication wirings, cooling facilities, fire-extinguishing facilities, and the following features: - Outside-air cooling method - Remote management system - Automatic switching
Outside-air cooling method	A method of cooling which utilizes outside air efficiently. This involves direct intake of the outside air to inside of the DC in order to cool the room temperature to maintain the DC-recommended temperature condition.
Remote management system	A system which remotely monitors and controls the temperature and electricity consumption of the project DC to control a variety of equipment including cooling and IT equipment and to achieve stable operation automatically without using human on-site monitoring or operation, in order to avoid energy loss caused by manual operation, such as door opening and closing to operate manually and adopt the method to automatically reduce energy consumption losses for
maintenance.	

	PUE is calculated based on the methodology developed by the Green Grid. ${ }^{1}$

C. Summary of the methodology

Items	Summary
GHG emission reduction measures	Energy reduction which leads to reductions of GHG is achieved by introducing energy-efficient project DC in place of the reference DC.
Calculation of reference emissions	Reference emissions are calculated by multiplying the monitored electricity consumption of the project DC, ratio of reference DC's PUE to project DC's PUE, and the CO_{2} emission factor of electricity.
Calculation of project emissions	GHG emissions associated with electricity consumption of project DC are calculated by multiplying the monitored
electricity consumption of the project DC by the emission factor	
of electricity.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project DC is newly introduced, highly efficient with designed PUE value under 1.3.
Criterion 2	The container is highly air-tight with IEC60529 value of IP-54 or higher based on manufacturer's inspection results.
Criterion 3	The project DC installs IT equipment that has operating temperature recommended by manufacturer with upper limit of 40 degrees C or higher.
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for the project DC is zero.
Criterion 5	A plan for not releasing refrigerant used for project DC is prepared.

[^0]E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types
Electricity consumption by reference DC	CO_{2}
Project emissions	
Emission sources	GHG types
Electricity consumption by project DC	CO_{2}

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying the monitored electricity consumption of the project DC, ratio of reference DC's PUE to project DC's PUE, and the CO_{2} emission factor of electricity.

In this methodology, PUE values are adopted as the efficiency indicator of DC. Net emission reductions are achieved in this methodology by conservatively setting the PUE value for the reference DC.
In this methodology, the default value of the PUE of the reference DC is conservatively set at 2.0.

The PUE of project DC is calculated with monitored electricity consumption of project DC as a whole and IT equipment of project DC.

F.2. Calculation of reference emissions

Reference emissions are calculated as follows:

$$
\begin{equation*}
R E_{p}=E C_{P J, p} \times\left(\frac{\eta_{R E F}}{\eta_{P J, p}}\right) \times E F_{\text {elec }} \tag{1}
\end{equation*}
$$

With:

$$
\begin{equation*}
\eta_{P J, p}=\frac{E C_{P J, p}}{\sum_{i=1}^{n} E C_{I T, i, p}} \tag{2}
\end{equation*}
$$

Where:

$R E_{p}$	$=$	Reference emissions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$
$E C_{P J, p}$	$=$	Total electricity consumption of project DC during the period p [MWh/p]
$\eta_{P J, p}$	$=$	Energy efficiency (PUE) of project DC during the period p [dimensionless]
$\eta_{\text {REF }}$	$=$	Energy efficiency (PUE) of reference DC [dimensionless]
$E F_{\text {elec }}$	$=$	CO_{2} emission factor of electricity consumed [$\left.\mathrm{CCO}_{2} / \mathrm{MWh}\right]$
$E C_{\text {IT,i,p }}$	$=$	Electricity consumption of IT equipment measured by electricity meter i during the period $p[\mathrm{MWh} / \mathrm{p}$]
n	$=$	Number of electricity meters measuring electricity consumption of IT equipment [dimensionless]
i	$=$	An index variable for electricity meters, measuring electricity consumption of IT equipment

G. Calculation of project emissions

Project emissions are calculated as follows:

$$
\begin{equation*}
P E_{p}=E C_{P J, p} \times E F_{\text {elec }} \tag{3}
\end{equation*}
$$

Where:

$P E_{p}$	$=$Project emissions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$
$E C_{P J, p}$	$=$Total electricity consumption of project DC during the period p $[\mathrm{MWh} / \mathrm{p}]$

$E F_{\text {elec }}$	$=$	CO_{2} emission factor of electricity consumed $[\mathrm{tCO} 2 / \mathrm{MWh}]$	

H. Calculation of emissions reductions

$$
\begin{equation*}
E R_{p}=R E_{p}-P E_{p} \tag{4}
\end{equation*}
$$

Where:

$E R_{p}$		
$R E_{p}$	$=$	Emission reductions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$
$P E_{p}$	$=$	Reference emissions during the period $p\left[\mathrm{tCO}_{2} / \mathrm{p}\right]$

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$\eta_{\text {REF }}$	$\begin{array}{l}\text { Energy efficiency (PUE) of reference DC. } \\ \text { Default value: } 2.0\end{array}$	$\begin{array}{l}\text { A default value provided based } \\ \text { on a survey conducted by } \\ \text { methodology proponent }\end{array}$
$E F_{\text {elec }}$	CO_{2} emission factor of electricity consumed.	
When captive power generation is not		
available at the project site, the most recent		
Laotian national grid emission factor is		
applied;		
factor]		
The most recent value		
announced by the Ministry of		
Environment and Natural		
Resources (MONRE), DNA for		
CDM unless otherwise		

[^0]: ${ }^{1}$ The Green Grid is a neutral, diverse, consensus-driven consortium providing a unified voice for the industry on resource efficiency (including resource efficiency of DC). In 2015, it had 112 member companies (http://www.thegreengrid.org).

