shifting cultivation in Phonxay District, Luang

Prabang Province of Lao PDR

 \times Additional information

23 December 2021

The attached draft JCM-PDD:

JCM Proposed Methodology Form for REDD-plus

Cover sheet of the Proposed Methodology Form		
Form for submitting the proposed methodology for REDD-plus		
Partner Country	Lao PDR	
Name of the methodology proponents	Waseda University	
submitting this form		
Title of the proposed methodology, and	Reducing GHG emissions form deforestation	
version number	and forest degradation through controlling	

History of the proposed methodology

form (please check): Date of completion

List of documents to be attached to this

Version	Date	Contents revised
1.0	23 December 2021	First Edition

A. Title of the methodology

Reducing GHG emissions from deforestation and forest degradation through controlling shifting cultivation in Phonxay District, Luang Prabang Province of Lao PDR

B. Terms and definitions

Terms	Definitions	
Lao People's Democratic	The national FREL/FRL is defined as the forest reference	
Republic Forest Reference	emission level/forest reference level of Lao People's	
Emission Level and Forest	Democratic Republic (May 2018), which was submitted by	
Reference Level for REDD+	the Government of Lao PDR to the UNFCCC secretariat	
Results Payment under the	through the official process of the technical assessment. The	
UNFCCC (national	reference period of the national FREL/FRL is from 2005 to	
FREL/FRL (2018))	2014.	
Forest Type Map	The forest type map is an official land cover/use map of the	
	Lao PDR which is used for establishing the national	
	FREL/FRL (2018) and is provided by the national forest	
	monitoring system.	
Peat land	Peat land is an area with an accumulation of partly	
	decomposed organic matter, with ash content equal to or less	
	than 35%, peat depth equal to deeper than 50 cm, and organic	
	carbon content (by weight) of at least 12% (Osaki et al.	
	2016 ¹).	

C. Summary of the methodology

Items	Summary	
Project activities (emission	Activities for reducing shifting cultivation pressures on forest	
reduction /removal	resources by introducing alternative and suitable livelihoods	
enhancement measures)	based on rural people's capability.	
Establishment of project	- The project reference level is calculated on the basis of the	
reference level	average net GHG emissions in the project area from 2005 to	
	2014.	

¹ Osaki, M., Hirose, K., Segah, H., & Helmy, F. (2016). Tropical peat and peatland definition in Indonesia. In Tropical Peatland Ecosystems (pp. 137-147). Springer, Tokyo.

	- The net GHG emission from carbon stock change in project
	area is calculated from the annual average of CO ₂ emissions
	and removals to be provided by the Government of Lao
	PDR. These values are consistent with the national
	FREL/FRL.
	- Non-CO ₂ GHG emissions from biomass burning in project
	area is considered following the 2006 IPCC Guidelines
	although the source is not included in the national
	FREL/FRL.
Calculation of project net	Project net emissions are calculated by using 2 types of data;
emissions/removals	1) CO ₂ emissions and removals from carbon stock change
	during the monitoring period which will be provided by the
	Government of Lao PDR based on the national forest
	monitoring system.
	2) GHG emissions from biomass burning, rice paddy
	cultivation and fossil fuel consumption associated with the
	project during the monitoring period are estimated by
	methods following the 2006 IPCC Guidelines.
Monitoring parameters and	- The national forest monitoring system monitors the land
methods	use/cover change. The analyzed data during the monitoring
	period is provided by the Government of Lao PDR, in the
	form of CO ₂ emissions and removals from carbon stock
	change.
	- Area of rice paddy (wet rice paddy) is calculated based on
	the land cover/use maps (the Forest Type Maps) analyzed
	and provided by the Government of Lao PDR.
	- Quantity of fuel consumptions by agricultural heavy
	machines newly introduced by the project is collected from
	business records in oil shop(s) in the project area and
	information from villagers using the participatory rural
	appraisal (PRA).
Calculation of project	The default discount factor of 30%, as defined in the Joint
emission reductions or	Crediting Mechanism Guidelines for Developing Proposed
removals to be credited	Methodology for Reducing Emissions from Deforestation and
	Forest Degradation, and the Role of Conservation, Sustainable
	Management of Forests and Enhancement of Forest Carbon
	Stocks in Developing Countries (REDD-plus) (hereinafter

referred to as "the methodology guidelines"), is applied to
project emissions reductions to account for the risk of reversal.

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project participants receive official data from the Government of Lao PDR,		
	such as the Forest Type Maps and carbon stock change emissions and removals		
	in the project area which are consistent with the national FREL/FRL and the		
	national forest monitoring system.		
Criterion 2	The project is to reduce deforestation and forest degradation in Project activity		
	in taking place within Phonxay District, Luang Prabang Province, Lao PDR,		
	where major drivers of deforestation and forest degradation are shifting		
	cultivation (i.e. slash-and-burn agriculture).		
Criterion 3	There is no peat land in the project area.		
Criterion 4	Project activities are implemented by collaboration among rural people and		
	project participant(s) who have been trained for alternative livelihood, which is		
	evidenced by participants list or activity records.		
Criterion 5	Project activities do not include activities which directly increase the number		
	of livestock.		
Criterion 6	Project activities do not include any activities which cause displacement of		
	deforestation and/or forest degradation outside of the project area. That is to be		
	confirmed during the monitoring period by the PRA.		

E. Geographical Boundaries

Essential		
Geographical boundary	Requirements	
Project area	No requirements in addition to those described in paragraphs 16	
	to 21 of the methodology guidelines ver01.0	
	(JCM_LA_GL_PM_REDD+_ver01.0.pdf).	
Reference area	The reference area is the same to the project area.	

Optional boundaries

Geographical boundary	Required (Y/N/TBD)	Additional requirements
Activity area	Ν	None
Displacement belt	Ν	None

TBD: to be decided by the project participant

F. Carbon pools and GHG sources

The net emission sources to be considered include all the following Carbon pools and GHG sources.

Project reference level			
Carbon pools and GHG sources		Included	Explanation
F	•		
		V	This pool is expected to contribute
	Above ground		significantly to emissions and
	biomass	I	emission reductions and is therefore
			included.
			This pool is expected to contribute
	Below ground	v	significantly to emissions and
	biomass	1	emission reductions and is therefore
			included.
			It is expected that this pool would
Carbon pools	Deed wood	N	have decreased in the absence of the
Carbon pools	Dead wood	1	project and, therefore, it is
			conservatively excluded.
		N	It is expected that this pool would
	Litter		have decreased in the absence of the
			project and, therefore, it is
			conservatively excluded.
	Soil organic carbon	N	It is expected that this pool would
			have decreased in the absence of the
			project and, therefore, it is
			conservatively excluded.
	CH, in biomass burning		GHG emission from this source is to
CHC sources	CHC success		be estimated.
GHG sources			GHG emission from this source is to
N_2O in biomass burning		, ,	be estimated.
Project net emissions/removals			
Carbon pool	s and GHG sources	Included (Y/N)	Explanation
Corbon reals	Above ground	V	This pool is expected to contribute
Carbon pools	biomass	Ŷ	significantly to emissions and

			emission reductions and is therefore
			included
			This pool is expected to contribute
	Below ground	Y	significantly to emissions and
	biomass	-	emission reductions and is therefore
			included.
			It is expected that this pool would
	Dood wood	N	have decreased in the absence of the
	Dead wood	18	project and, therefore, it is
			conservatively excluded.
			It is expected that this pool would
	Litton	N	have decreased in the absence of the
	Liuer	N	project and, therefore, it is
			conservatively excluded.
		N	It is expected that this pool would
	0.11 . 1		have decreased in the absence of the
	Son organic carbon		project and, therefore, it is
			conservatively excluded.
	CH ₄ in biomass burning		GHG emission from this source is to
			be estimated.
	N. O in hismass humins		GHG emission from this source is to
	GHG sources CH4 from paddy (wet paddy) area expanded during the monitoring period. CO2 emissions from energy use for agricultural heavy machines newly introduced by the project		be estimated.
CUC courses			GHG emission from this source is to
GHG sources			be estimated.
			GHG emission from this source is to
			be estimated.

G. Establishment and calculation of project reference level

G.1. Establishment of project reference level

Approach for estimating project	The reference level is established based on carbon stock
reference level	change data to be provided by the Government of Lao
	PDR and other GHG emissions in the project area.

The Government of Lao PDR submitted its proposed forest reference emission level/forest

reference level (national FREL/FRL) on 5 January 2018 to the UNFCCC secretariat. The technical assessment on the proposed FREL/FRL was conducted by the experts and the Government of Lao PDR provided a modified version of its FREL/FRL submission on 28 May 2018, considering the technical inputs of the technical assessment. The national FREL/FRL for the reference period 2005–2014 was emissions of 41,013,316 t CO₂/year and removals of 7,533,558 t CO₂/year in line with the modified submission and it is assumed to be valid for the next 11 years (i.e. 2015–2025).

The methodology guidelines require to respect the national reference level or forest monitoring system developed by the Government of Lao PDR, to apply the approach and procedures used for the national reference level when developing the project reference level and to consider the approach and procedures used in national forest monitoring system when establishing the monitoring system for the project. This methodology fully respects the national reference level and forest monitoring system based on the consultations with the technical contact person for REDD-plus under the JCM.

The project reference level is calculated from the CO₂ emissions and removals by carbon stock change ($CS_{emission ref}$ and $CS_{removal ref}$, respectively) and Non-CO₂ GHG emissions (CH₄ and N₂O) from biomass burning in the project reference area (= project area) during the reference period.

The *CS_{emission ref}* and *CS_{removal ref}* are to be provided by the Government of Lao PDR, and estimated from activity data and emission factors used in the development of national FREL/FRL.

The activity data (area changed) in the project reference area during the project reference period and the monitoring period are derived from the Forest Type Maps in the project reference area/project area developed with 5-year intervals (e.g., 2005, 2010, 2015). The land-use and land cover were classified into 20 classes including 8 forest types and grouped into five strata as below.

- Stratum 1: evergreen forest
- Stratum 2: mixed deciduous forest, conifer forest, and mixed coniferous and broadleaved forest
- Stratum 3: dry dipterocarp forest
- Stratum 4: plantation, bamboo and regenerating vegetation
- Stratum 5: 12 non-forest classes, including grasslands, rice paddies, urban areas, and barren land and rock.

The activity data in a form of land transition matrix of the five strata in the reference area/project area for the periods are to be developed by the Government of Lao PDR.

The emission factors are presented in the Table 4-2 of the national FREL/FRL. The emission (and removal) factors corresponding to transitions between two strata were difference in the carbon stocks between the two strata. The forest carbon stocks were derived using the data from the second National Forest Inventory (NFI) conducted during the period 2015–2017 together with the default parameters provided in the 2006 IPCC Guidelines. To calculate the above-ground biomass stocks of the five strata of land classes, country-specific allometric equations were applied, while the root-to-shoot ratios provided in the 2006 IPCC Guidelines (vol. 4, chapter 4, table 4.4) were applied to calculate the below-ground biomass stocks. Biomass stocks were converted into carbon stocks using the carbon fraction values (0.46 or 0.47 depending on the land class) provided in the 2006 IPCC Guidelines (vol. 4, chapter 4, table 4.3).

To estimate Non-CO₂ GHG emissions (CH₄ and N₂O) from biomass burning in the project reference area (= project area) during the reference period in a conservative manner, the minimum area of upland crop (UC) in all Forest Type Maps during the reference period is applied as average burnt area during the reference period, and all the burnt area is assumed to have been regenerating vegetation before being burned as the mass of fuel available for combustion in regenerating vegetation is the smallest among all strata.

G.2. Calculation of project reference level

1. The provide the provided the	oject reference level is calculated as follows;	
$RL_y = CS_{net}$	$_{ref,y} + Fire_{ref,y}$	(Equation 1)
Where:		
RL_y	Project reference level in year y [tCO ₂ e/yr]	
$CS_{net ref,y}$	Net emissions/removals from carbon stock ch	anges in above- and below-ground
	biomass in project reference area in year y [tCo	O ₂ e/yr]
$Fire_{ref,y}$	Amount of non-CO2 GHG emissions from fo	rest fires (i.e. biomass burning) in
	project reference area in year y [tCO ₂ e/yr]	
2. Calcula	ation of <i>CS_{net ref,y}</i> is as follows;	
$CS_{net ref,y} =$	$CS_{emission \ ref,y} + CS_{removal \ ref,y}$ -	(Equation 2)
Where:		
CS _{emission}	ref.y Amount of CO ₂ emissions from carbon	pools (above- and below-ground
	biomass) in project reference area in year	y during the reference periods
	[tCO ₂ e/yr], provided by the Government of La	o PDR.
CS _{removal}	<i>ref,y</i> Amount of CO ₂ removals into carbon	pools (above- and below-ground

	biomass) in project reference area in year y during the reference periods
	[tCO ₂ e/yr], provided by the Government of Lao PDR.
3. Calculat	ion of $Fire_{ref,y}$ is as follows (CH ₄ and N ₂ O emissions from biomass burning are
calculated a	although they are not considered in the national FREL/FRL);
$Fire_{ref,y} = \Sigma$	$(A-burn_{refi} \times MB_{ref,rv} \times Cf_i \times G_{ef,k} \times 10^{-3} \times GWP_k) $ (Equation 3)
Where:	
$Fire_{ref,y}$	Amount of non-CO ₂ GHG (i.e. CH_4 and N_2O) emissions from forest fires in project
	reference area in year y [tCO ₂ e/yr]
A-burn _{ref}	r_i Annual burnt area in stratum <i>i</i> during the reference period in project reference area
	[ha/yr]
	The minimum area of upland crop (UC) in all Forest Type Maps during the
	reference period is applied as the burnt area
MB _{ref,rv}	Mass of fuel available for combustion in regenerating vegetation in project
	reference area during the reference period [t/ha]
Cf_i	Combustion factor (identified as secondary tropical forests in line with 2006 IPCC
	Guidelines) [dimensionless]
$G_{ef,k}$	Emission factor of GHG_k in forest fire in the project reference area [g/kg-d.m.
	burnt]
GWP_k	Global Warming Potential of GHG_k [25 for CH_4 or 298 for N_2O]
i	Stratum type. Regenerating vegetation is to be applied for all burnt area
	[dimensionless]
k	Type of GHG [dimensionless]
$MB_{ref,rv} = C$	$T_{ref,rv} / (44/12 \times CF_i)$ (Equation 4)
MB _{ref rv}	Mass of fuel available for combustion in regenerating vegetation in project
	reference area during the reference period [t/ha]
$C_{ref,rv}$	Carbon Stock in regenerating vegetation to be applied for the reference period
	[tCO ₂ /ha]
CF_i	Carbon fraction of dry matter in stratum <i>i</i> [dimensionless]

H. Calculation of project net emissions/removals

1. Project net emissions in year y during the monitoring period are calculated as follows; $PE_y = CS_{net pro,y} + Fire_{pro,y} + Paddy_{pro,y} + E_{pro,y}$ (Equation 5) Where: PE_y Project net emissions in year y [tCO₂e/yr]

- $CS_{net pro,y}$ Net emissions/removals from carbon stock changes in above- and below-ground biomass during the monitoring period in year y [tCO₂e/yr]
- $Fire_{pro,y}$ Amount of non-CO₂ GHG emissions from forest fires during the monitoring period in the project area in year y [tCO₂e/yr]
- *Paddy*_{pro,y} Amount of GHG emissions from rice paddy area expanded during the monitoring period in the project area in year y [tCO₂e /yr]
- $E_{pro,y}$ Amount of CO₂ emissions from energy use for agricultural heavy machine for the project activities during the monitoring period in the project area in year y [tCO₂e/yr]

2. Calculation of *CS*_{net pro,y} is as follows;

 $CS_{net pro,y} = CS_{emission pro,y} + CS_{removal pro,y}$

(Equation 6)

Where:

- *CS_{emission pro.y}* Amount of CO₂ emissions from carbon pools (above- and below-ground biomass) during the monitoring period in the project area [tCO₂e/yr], provided by the Government of Lao PDR.
- *CS_{removal pro,y}* Amount of CO₂ removals into carbon pools (above- and below-ground biomass) during the monitoring period in the project area [tCO₂e/yr], provided by the Government of Lao PDR..
- 3. Calculation of *Fire*_{pro,y} is as follows (CH₄ and N₂O emissions from biomass burning are calculated although they are not considered in the national FREL/FRL);

 $Fire_{pro,y} = \sum_{i,k} (A - burn_{pro,i} \times MB_{pro,i} \times Cf_i \times G_{ef,k} \times 10^{-3} \times GWP_k)$ (Equation 7) Where:

- $Fire_{pro,y}$ Amount of non-CO₂ GHG (i.e. CH₄ and N₂O) emissions from forest fires during the monitoring period in the project area in year y [tCO₂e/yr]
- *A-burn*_{pro,i} Maximum annual burnt area in stratum *i* during the monitoring period in the project area [ha/yr]
- $MB_{pro\ i}$ Mass of fuel available for combustion in stratum *i* during the monitoring period in the project area [t/ha]
- *Cf*^{*i*} Combustion factor [dimensionless]
- $G_{ef,k}$ Emission factor of GHG k in forest fire during the monitoring period in the project area [g/kg-dm burnt]
- GWP_k Global Warming Potential of GHG k [25 for CH₄ or 298 for N₂O]
- *i* Stratum type [dimensionless]

k

Type of GHG [dimensionless]

$MB_{pro\ i} = 0$ Where:	$C_{pro,i} \times (1 - R_{ratio, i}) / (44/12 \times CF_i)$	(Equation 8)
MB _{pro} i	Mass of fuel available for combustion in stratum <i>i</i> during the project area [t/ha]	the monitoring period in
C _{pro i}	Above-ground and below-ground carbon stock in stratum period in the project area [tCO ₂ /ha]	<i>i</i> during the monitoring
R _{ratio, i}	Ratio of below-ground biomass to above-ground biomass i area (%)	in stratum <i>i</i> in the project
CF_i	Carbon fraction of dry matter in stratum <i>i</i> [dimensionless]	
i	Stratum type [dimensionless]	
4. Calcu	lation of <i>Paddy</i> _{pro,y} is as follows;	
Paddy _{pro,y} Where:	$= EF_{pro} \times A - p_{pro,y} \times t_{pro} \times 10^{-3} \times GWP_k$	(Equation 9)
$Paddy_{pl}$	v,y Amount of GHG emissions from rice paddy area expande	ed during the monitoring
	period in the project area in year y [tCO ₂ e /yr]	
EF_{pro}	A daily emission factor from rice paddy cultivation durin in the project area [kg CH4/ha/day]	g the monitoring period
A-p _{pro,y}	Area of rice paddy expanded during the monitoring perio year y [ha/yr]	d in the project area in
t_{pro}	Maximum cultivation period of rice paddy during the n project area in year y [day]	nonitoring period in the
GWP_k	Global Warming Potential of GHG k [25 for CH ₄]	
k	Type of GHG [dimensionless]	
$EF_{pro} = EL$	$F_c \times SF_w \times SF_p$	(Equation 10)
Where:		
EF_{pro}	A daily emission factor from rice paddy cultivation during in the project area [kg CH ₄ /ha/day]	the monitoring period
EF_c	Baseline emission factor for continuously flooded fields with amendments [kg CH ₄ /ha/day]	ithout organic
SF_w	Scaling factor to account for the differences in water regime period [dimensionless]	ne during the cultivation
SF_p	Scaling factor to account for the differences in water regime the cultivation period [dimensionless]	in the pre-season before

5. Calcula	tion of $E_{pro,y}$ is as follows;	
$E_{pro,y} = FC_M$	$_{MG,y}$ $ imes$ NCV_{MG} $ imes$ $E_{fuel,MG}$	(Equation 11)
Where:		
$E_{pro,y}$	Amount of CO_2 emissions from energy use for agricultural heavy machineries for	
	project activities during the monitoring period in the project	ect area in year y
	[tCO ₂ e/yr]	
$FC_{MG,y}$	Maximum consumption of motor gasoline during the m	onitoring period in the
	project area in year y [kg/yr]	
NCV_{MG}	Net calorific value of motor gasoline [GJ/kg]	
$EF_{fuel,MG}$	CO_2 emission factor of motor gasoline combusted [t CO_2/C	G1]

I. Calculation of project emissions reductions or removals to be credited

1. Projec	1. Project emission reductions are calculated as the difference between the project reference level	
and p	roject net emissions/removals, as follows;	
$ER_y = (RL)$	$y - PE_y$)	(Equation 12)
Where:		
ER_y	Net GHG emission reductions in year y [tCO ₂ e]	
RL_y	Project reference level in year y [tCO ₂ e]	
PE_y	Project net emissions/removals in year y [tCO ₂ e]	
2. Annu	al project emission reductions to be credited are calculated	considering the discount for
the ris	sk of reversals. The default value of 30% is applied for the c	liscount factor.
$ER_{credt,y} =$	$ER_y \times (1 - DF)$	(Equation 13)
Where:		
$ER_{credt,y}$	Project emission reductions to be credited in year y [tC	CO_2e]
ER_y	Project emission reductions in year y [tCO ₂ e]	
DF	Discount factor, the default value specified in the meth	nodology guidelines as 0.3
 Project follow 	ct emission reductions to be credited during a monitoring pe	eriod p are calculated as
$ER_{credt,p} = \Sigma$	$\Sigma_y ER_{credt,y}$	(Equation 14)
Where:		
$ER_{credt,p}$	Project emission reductions to be credited during a mo	nitoring period p [tCO ₂ e]
$ER_{credt,y}$	Project emission reductions to be credited in year y [tC	CO ₂ e]

J. Data and parameters fixed <i>ex ante</i>			
The source of each data and parameter fixed <i>ex ante</i> ² is listed as below.			
Parameter	Description of data	Source	
	Amount of CO ₂ emission from carbon	The data is to be provided by the	
CSemission	pools (above- and below-ground	Government of Lao PDR and	
ref,y	biomass) in project reference area in	consistent with national FREL/FRL.	
	year y		
	Amount of CO ₂ emission from carbon	The data is to be provided by the	
CS _{removal}	pools (above- and below-ground	Government of Lao PDR and	
ref,y	biomass) in project reference area in	consistent with national FREL/FRL.	
	year y		
	Annual burnt area in stratum <i>i</i> in project reference area during the reference period [ha/yr]	The data is to be provided from the	
		Government of Lao PDR. As upland	
		crop field is generally used just for one	
		year after burning and turned into	
		regenerating vegetation the next year,	
		area of Upland Crop (UC) in a Forest	
1 baum		Type Map of a year is applied as	
A-DUI n _{ref.i}		average burnt area in the previous year.	
		The minimum area of UC in all Forest	
		Type Maps during reference period is	
		considered as burnt area during the	
		reference period.	
		Regenerating vegetation is applied for	
		stratum <i>i</i> for all burnt area.	
C^{f}	Combustion factor [dimensionless]	Table 2.6 of Chapter 2 Volume 4 of	
C_{Ji}	- All secondary tropical forests: 0.55	2006 IPCC Guidelines	
	Emission factor of GHG k in forest fire	Table 2.5 of Chapter 2 Volume 4 of	
$G_{ef,k}$	[g/kg-d.m. burnt]	2006 IPCC Guidelines	
	- Tropical forest: CH ₄ 6.8, N ₂ O 0.20		
	Global Warming Potential of GHG k	Table 2.14 in Chapter 2 of	
GWP_k	- CH4: 25	Contribution of Working Group I to	
	- N ₂ O: 298	the Fourth Assessment Report of the	

 $^{^2}$ This includes including the data to be provided by the Government of Lao PDR and consistent with national FREL/FRL as criterion 1 of the eligibility criteria.

		IPCC
	Carbon Stock in regenerating vegetation	The data is to be provided from the
Crefry	to be applied for the reference period	Government of Lao PDR and
0109,11	[tCO ₂ /ha]	consistent with national FREL/FRL
	- 65.8	
	Carbon fraction of dry matter in stratum	Annex 2 of national FREL/FRL
CF_i	<i>i</i> [dimensionless]	
	- Current Forest: 0.47	
	Ratio of below-ground biomass to	Table 4.4 of Chapter 4 Volume 4 of
	above-ground biomass [%];	2006 IPCC Guidelines
R	if above-ground biomass is under 125	
K ratio,i	t/ha: 0.2	
	if above-ground biomass is over 125	
	t/ha: 0.24	
	Baseline emission factor for	Table 5.11 of Chapter 5 Volume 4 of
FF	continuously flooded fields without	2006 IPCC Guidelines
	organic amendments [kg CH4/ha/day]	
	- CH ₄ emission as IPCC default: 1.30	
	Scaling factor to account for the	Table 5.12 of Chapter 5 Volume 4 of
	differences in water regime during the	2006 IPCC Guidelines
SF_w	cultivation period [dimensionless]	
	- Rainfed and deep water (Regular	
	rainfed): 0.27	
	Scaling factor to account for the	Table 5.13 of Chapter 5 Volume 4 of
	differences in water regime in the pre-	2006 IPCC Guidelines
SE	season before the cultivation period	
SI p	[dimensionless]	
	- Non flooded preseason >180 day:	
	1.22	
	Net calorific value of motor gasoline	Table 1.2 of Chapter 1 Volume 2 of
NCV_{MG}	[GJ/kg]	2006 IPCC Guidelines
	- Motor Gasoline: 44.3 TJ/Gg	
	CO ₂ emission factor of the motor	Table 3.2.1 of Chapter 3 and Table 2.5
$EF_{fuel,MG}$	gasoline combusted [tCO ₂ /GJ]	of Chapter 2 Volume 2 of 2006 IPCC
	- Motor Gasoline: 69,300 kg CO ₂ /TJ	Guidelines

DF	A default discount factor of 30% as defined in the guideline is applied (<i>see</i> right) automatically	Joint Crediting Mechanism Guidelines for Developing Proposed Methodology for Reducing Emissions from Deforestation and Forest Degradation, and the Role of Conservation, Sustainable Management of Forests and Enhancement of Forest Carbon Stocks in Developing Countries (REDD-plus) for Lao PDR. (JCM_LA_GL_PM_REDD+_ver01.0)
----	---	---