(k) Other comments

Input on "MRS(input_PJ_Opt1)" sheet

Input on "MRS(input_PJ_Opt1)" sheet

(j) Monitoring frequency

(a)	(b)	post (c)	(d)	(e)	(f)	(g)	(h)	(i)
Monitoring period	Monitoring point No.	Parameters	Description of data	Monitored Values	Units	Monitoring option	Source of data	Measurement methods and procedures
2 March 2018 to December 2020		CA _{pjiy}	(Option 1) Area converted from forest class <i>i</i> to non-forest in the project area in year <i>y</i>	-	ha	Option A	Cambodia's official forest map (National Land Cover Map published by the Ministry of Environment)	Area of converted forest class to non-lorest with error-adjusted area estimates applied as a factor. Calculated by extracting (histogram) of each forest class area from the Government official forest maps (or other approved data sources) at monitoring period start and monitoring period end. The area of forest conversion, from beginning to end of the monitoring period, to non-forest for each forest class is then adjusted based on accuracy as established using best practice methods and formulas as described in Dirfsson et al. (2014)
2 March 2018 to December 2020	(2)	CA _{d pjiy}	(Option 1) Area converted from forest class <i>i</i> to non-forest in the displacement belt in year <i>y</i>	-	ha	Option A	Cambodia's official forest map (National Land Cover Map published by the Ministry of Environment)	Immulas as described in Clofsson et al. (2014). Area of converted forest class to non-forest with error-adjusted area estimates applied as a factor. Calculated by extracting (histogram) of each forest class area from the Government official forest maps (or other approved data sources) at monitoring period start and monitoring period end. The area of forest conversion, from beginning to end of the monitoring period, to non-forest for each forest class is then adjusted based on accuracy as established using best practice methods and formulas as, described in Officsson et al. (2014).
2 March 2018 to 1 December 2020	(3)	FC _{f y}	(Direct method) Quantity of fuel type <i>f</i> consumed in year <i>y</i>	-	kg	Option B	Invoices, project management record	All purchase records of fuel used for the project activities, and record type and amount of fuel and type of vehicle/equipment were collected.
2 March 2018 to December 2020	(4)	NVEjty	(Indirect method) Number of vehicle or equipment type <i>i</i> using fuel type <i>f</i> in year <i>y</i>	-	unit	Option C	Project management record	Not measured as Direct method was selected.
2 March 2018 to 1 December 2020	(5)	TDUjfy	(Indirect method) Total travel distance for vehicle type j or use hours for equipment type j using fuel type f in year y	-	km or hour	Option C	Project management record (trip record etc)	Not measured as Direct method was selected.
12 March 2018 to 1 December 2020	(6)	SEC _{j f}	Average specific energy consumption of vehicle or equipment type <i>j</i> for fuel type <i>f</i>	-	kg km ⁻¹ or hour ⁻¹	Option A/C	Manufacturer specifications or measurement	Not measured as Direct method was selected.
12 March 2018 to 1 December 2020	(7)	M _{SN c y}	Mass of synthetic fertilizer applied for implementation of the project activities in cropland type c in the project area and the activity area in year v	-	t	Option B	Invoices, project management record	No synthetic fertilizer was used for the project during the monitoring period.
12 March 2018 to 1 December 2020	(8)	M _{ON cy}	Mass of organic fertilizer made from materials sourced from outside of the project area and the activity area and applied for implementation of the project activities in cropland type c in the project area and the activity area in year y	-	t	Option C	Invoices, project management record	No organic fertilizer made from materials sourced from outside of the project area and the activity area was applied.
12 March 2018 to 31 December 2020	(9)	NC _{SN c}	Nitrogen content of synthetic fertilizer applied in cropland type c	-	tN (t fertilizer) ⁻¹	Option A	Data from producers of synthetic fertilize	-
12 March 2018 to 1 December 2020	(10)	NC _{ON c}	Nitrogen content of organic fertilizer applied in cropland type c	-	tN (t fertilizer)-1	Option A	Published data	-
			Harvested annual dry matter yield for N-					

								Itormulas as described in Olotsson et al. (2014)		
12 March 2018 to 31 December 2020	(3)	FC _{f y}	(Direct method) Quantity of fuel type <i>f</i> consumed in year <i>y</i>	-	kg	Option B	Invoices, project management record	All purchase records of fuel used for the project activities, and record type and amount of fuel and type of vehicle/equipment were collected.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(4)	NVEjfy	(Indirect method) Number of vehicle or equipment type <i>i</i> using fuel type <i>f</i> in year <i>y</i>	-	unit	Option C	Project management record	Not measured as Direct method was selected.	-	Input on "MRS(input PJ Opt1)" sheet
12 March 2018 to 31 December 2020	(5)	TDUjty	(Indirect method) Total travel distance for vehicle type <i>j</i> or use hours for equipment type <i>j</i> using fuel type <i>f</i> in year <i>y</i>	-	km or hour	Option C	Project management record (trip record etc)	Not measured as Direct method was selected.	-	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(6)	SEC _{j1}	Average specific energy consumption of vehicle or equipment type <i>j</i> for fuel type <i>f</i>	-	kg km ⁻¹ or hour ⁻¹	Option A/C	Manufacturer specifications or measurement	Not measured as Direct method was selected.	-	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(7)	M _{SN c y}	Mass of synthetic fertilizer applied for implementation of the project activities in cropland type c in the project area and the activity area in year v	-	t	Option B	Invoices, project management record	No synthetic fertilizer was used for the project during the monitoring period.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(8)	M _{ON c y}	Mass of organic fertilizer made from materials sourced from outside of the project area and the activity area and applied for implementation of the project activities in cropland type c in the project area and the activity area in year y	-	t	Option C	Invoices, project management record	No organic fertilizer made from materials sourced from outside of the project area and the activity area was applied.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(9)	NC _{SN c}	Nitrogen content of synthetic fertilizer applied in cropland type c	-	tN (t fertilizer) ⁻¹	Option A	Data from producers of synthetic fertilize	-	Once before the initial verification	Input on "MRS(input PJ Opt1)" sheet
12 March 2018 to 31 December 2020	(10)	NC _{ON c}	Nitrogen content of organic fertilizer applied in cropland type c	-	tN (t fertilizer) ⁻¹	Option A	Published data	-	Once before the initial verification	Input on "MRS(input PJ Opt1)" sheet
12 March 2018 to 31 December 2020	(11)	Сгор _{сту}	Harvested annual dry matter yield for N- fixing crop T per unit area, introduced for implementation of the project activities in cropland type c in the project area and the activity area in year y	-	t d.m. ha ⁻¹	Option A	Published data or Project management record	Published average dry yield data for the N-fixing crop is used.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(12)	Area _{c T y}	Total annual area harvested of N-fixing crop <i>T</i> , introduced for implementation of the project activities in cropland type <i>c</i> in the project area and the activity area in year <i>v</i>	-	ha	Option C	Project management record	Area harvested N-fixing crop by interviewing farmers was recorded.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(13)	R _{AG T}	Ratio of above-ground residues to harvested yield for N-fixing crop T	-	t d.m. (t d.m.) ⁻¹	Option A	Published data or calculation	Calculated based on Table 11.2 of Ch. 11, Vol, 4 of 2006 IPCC Guidelines, published yield data.	Once before the initial verification	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(14)	R _{BG T}	Ratio of below-ground residues to harvested yield for N-fixing crop T	-	t d.m. (t d.m.) ⁻¹	Option A	Published data or calculation	Calculated based on Table 11.2 of Ch. 11, Vol, 4 of 2006 IPCC Guidelines, published yield data.	Once before the initial verification	Input on "MRS(input PJ Opt1)" sheet
12 March 2018 to 31 December 2020	(15)	N _{AG T}	N content of above-ground residues for N- fixing crop T	-	t N (t d.m.) ⁻¹	Option A	Published data	Table 11.2 of Ch. 11, Vol, 4 of 2006 IPCC Guidelines	Once before the initial verification	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(16)	N _{BG T}	N content of below-ground residues for N-fixing crop T	-	t N (t d.m.) ⁻¹	Option A	Published data	Table 11.2 of Ch. 11, Vol, 4 of 2006 IPCC Guidelines	Once before the initial verification	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(17)	Frac _{Renew T}	Fraction of total area under N-fixing crop T that is renewed annually	-	dimensionless	Option C	Interview	Interview for local agriculture expert	Once before the initial verification	Input on "MRS(input PJ Opt1)" sheet
12 March 2018 to 31 December 2020	(18)	M _{limestone y}	Mass of calcic limestone (CaCO ₃) applied for implementation of the project activities in the project area and the activity area in year y	-	t	Option B	Invoices, project management record	No calcic limestone was applied during the monitoring period.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(19)	M _{dolomite y}	Mass of dolomite (CaMg(CO ₃) ₂) applied for implementation of the project activities in the project area and the activity area in year γ	-	t	Option B	Invoices, project management record	No dolomite was applied during the monitoring period.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet
12 March 2018 to 31 December 2020	(20)	M _{urea y}	Mass of urea fertilizer applied for implementation of the project activities in the project area and the activity area in year y	-	t	Option B	Invoices, project management record	No urea fertilizer was applied during the monitoring period.	Once every year	Input on "MRS(input_PJ_Opt1)" sheet

An of the second seco	(a) Parameters	(b)	(c)	(d) Units	(e) Source of date	(t)
And of there takes in the digeners bet in the respine of the respine respine respine of the respine of the respine of the respine of		Description of data	Estimated		Source of data	Other comments
MarkM	A _{i0}	Area of forest class <i>i</i> in the project area at the inception of the project	-	ha	Cambodia's official forest map	Input on "MPS(input_RL_Opt1)" s
Name Name <th< td=""><td>A_{di0}</td><td></td><td>-</td><td>ha</td><td>Cambodia's official forest map</td><td>Input on "MPS(input_RL_Opt1)" si</td></th<>	A _{di0}		-	ha	Cambodia's official forest map	Input on "MPS(input_RL_Opt1)" si
Process Answardsky besteps Post of MPS (pp, L, D, pr) Print Pri	d _y	Number of operating days in year y	-	days	Decided based on starting date of project operation and expected operational lifetime of project	Input on "MPS(input_RL_Opt1)" si
c wind by decisions and Array strategy pocked by low pocked by an object (P) to not hear (P) to not hear (P). wind by decision for (P). wind by decision for (P). by Array strategy pocked by an Pice (P) to not hear (P). Controls of data brack reference lew (PR). Controls of data brack reference lew (PR). by Array strategy pocked by an Pice (P) to not hear (P). Controls of data brack reference lew (PR). Controls of data brack reference lew (PR). by Array strategy pocked by an object (P) to not hear (P). Controls of data brack reference lew (PR). Controls of data brack reference lew (PR). by Array strategy pocked by an object (P) to not hear (P). Controls of data brack reference lew (PR). Controls of data brack reference lew (PR). by Array strategy pocked by an object (P) to not hear (P). Controls of data brack reference lew (PR). Controls of data brack reference lew (PR). by Array strategy pocked by an object (P) to not hear (P). Controls of data brack reference lew (PR). Controls of data brack reference lew (PR). by Array strategy pocked by an object (P) to not hear (P). Controls of data brack reference lew (PR). Controls of data brack reference lew (PR). by Array strategy pocked by an object (P) to not hear (P). Controls of data brack reference lew (PR). C	d _{oy}	Number of days in year y	-	days	Automatically decided by number of year y	Input on "MPS(input_RL_Opt1)" s
Set of white relevance and white of wheread of the set of the	PE		0.0249	dimensionless	Automatically decided by number of year y	Input on "MPS(input_RL_Opt1)" s
p metagenergy metageneagenergy metagenergy <t< td=""><td>P_{SE}</td><td>forest within the reference area</td><td>0.0309</td><td>dimensionless</td><td>Cambodia's official forest reference level (FRL)</td><td></td></t<>	P _{SE}	forest within the reference area	0.0309	dimensionless	Cambodia's official forest reference level (FRL)	
0wind the steepen area0.0000infinition0.00000infinition0.000000infinition0.000000infinition0.000000infinition0.000000infinition0.000000infinition0.000000infinition0.000000infinition0.000000infinition0.000000infinition0.000000infinition0.0000000infinition0.0000000infinition0.00000000000000000000000000000000000	P _P	the reference area	0.0000	dimensionless	Cambodia's official forest reference level (FRL)	
s intercor and	PD	within the reference area	0.0345	dimensionless	Cambodia's official forest reference level (FRL)	
Generation Industry and a standards of periods (No. 1) Industry and a standards of periods (No. 1) Industry and a standards of periods (No. 1) Mark Annual transform podability from Randow (RF) to non-freet with the defences area Generations	P _B	reference area	0.0141	dimensionless	Cambodia's official forest reference level (FRL)	
indwith the reference area0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutes0.0141andminutesandminutes0.0141andminutesandminutes0.0141andminutes <td>P_M</td> <td>the reference area</td> <td>0.0100</td> <td>dimensionless</td> <td>Cambodia's official forest reference level (FRL)</td> <td></td>	P _M	the reference area	0.0100	dimensionless	Cambodia's official forest reference level (FRL)	
rm which for detence area 0.0000 interactions controls controls <td>P_{MR}</td> <td>within the reference area</td> <td>0.0417</td> <td>dimensionless</td> <td>Cambodia's official forest reference level (FRL)</td> <td></td>	P _{MR}	within the reference area	0.0417	dimensionless	Cambodia's official forest reference level (FRL)	
rn which the reference area COUPY Control Count and cou	P _{FF}	within the reference area	0.0506	dimensionless	Cambodia's official forest reference level (FRL)	
The defension and interference of the defension of	P _{FR}	within the reference area	0.0972	dimensionless	Cambodia's official forest reference level (FRL)	
mm while the reference area LUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	D _{TP}	within the reference area	0.1169	dimensionless	Cambodia's official forest reference level (FRL)	
of a constraint of a spin back in the displacement back in the displaceme	Ppp	within the reference area	0.0000	dimensionless	Cambodia's official forest reference level (FRL)	
site forest whith de displacement bet forest whith displacement bet </td <td>P_{d E}</td> <td></td> <td>0.0249</td> <td>dimensionless</td> <td>Cambodia's official forest maps</td> <td></td>	P _{d E}		0.0249	dimensionless	Cambodia's official forest maps	
app the displacement bet 0.0000 orminantsolutions and unitable form belows form (D) to non-forest within the displacement bet 0.0000 dimensionless Candoals a ditical forest maps app Amula transition probability from Ramoo (B) to non-forest within displacement bet 0.0104 dimensionless Candoals a ditical forest maps Immensionless Candoals a ditical forest maps<	P _{d SE}		0.0309	dimensionless	Cambodia's official forest maps	
and white the displacement beit UNUSE dimensionless Camodals andial longer maps and Analytansition probability from Rambo (1) to non-forest within the displacement beit 0.014 dimensionless Cambodials official forest maps Image Image Image Image Cambodials official forest maps Image	P _{dP}		0.0000	dimensionless	Cambodia's official forest maps	
ds big displacement bet Unital dimensionless Cambodia soficial forest maps du moult massition probability from Mangrove (M) to non-forest within the displacement bet 0.010 dimensionless Cambodia's official forest maps du massition probability from Rear Mangrove (MR) to non-forest 0.0417 dimensionless Cambodia's official forest maps du massition probability from Forest ergrowth (FR) to non-forest 0.0506 dimensionless Cambodia's official forest maps du massition probability from Forest ergrowth (FR) to non-forest 0.0972 dimensionless Cambodia's official forest maps du massition probability from Tores plantation (TP) to non-forest 0.0972 dimensionless Cambodia's official forest maps du massition probability from Three plantation (TP) to non-forest 0.0972 dimensionless Cambodia's official forest maps du p minite displacement bet 0.0972 dimensionless Cambodia's official forest maps Cambodia's official forest maps du p minite displacement bet 0.0972 dimensionless Cambodia's official forest maps Cambodia's official forest maps	PdD	within the displacement belt		dimensionless	Cambodia's official forest maps	
du d	P _{d B}		0.0141	dimensionless	Cambodia's official forest maps	
dukwithin the displacement beit0.0041 / dimensionlessCalmodula soficial forest mapsduffAnnual transition probability from Flooded forest (FF) to non-forest0.0506dimensionlessCambodia's official forest mapsduffAnnual transition probability from Forest regrowth (FR) to non-forest0.0972dimensionlessCambodia's official forest mapsduffAnnual transition probability from Tree plantation (TP) to non-forest0.0972dimensionlessCambodia's official forest mapsduffAnnual transition probability from Tree plantation (TP) to non-forest0.0000dimensionlessCambodia's official forest mapsduffAnnual transition probability from Tree plantation (PP) to non-forest0.0000dimensionlessCambodia's official forest mapsduffEmission factor applicable for Evergreen forest (E)91.3000(C ha ⁻¹ Cambodia's official forest reference level (FRL)eFgEmission factor applicable for Semi-evergreen forest (SE)10.5100(C ha ⁻¹ Cambodia's official forest reference level (FRL)eFgEmission factor applicable for Pine forest (P)56.5400(C ha ⁻¹ Cambodia's official forest reference level (FRL)eFgEmission factor applicable for Mangrove (MR)0.0000(C ha ⁻¹ Cambodia's official forest reference level (FRL)eFuEmission factor applicable for Mangrove (MR)0.2400(C ha ⁻¹ Cambodia's official forest reference level (FRL)eFuEmission factor applicable for Mangrove (MR)0.2400(C ha ⁻¹ Cambodia's official forest reference level (FRL)eFu	P _{d M}		0.0100	dimensionless	Cambodia's official forest maps	
drf within the displacement beit 0.0000 dimensioness Cambodia solicital forest maps dr P Annual transition probability from Tores tragrowth (FR) to non-forest 0.0972 dimensionless Cambodia's official forest maps cambodia's official forest maps dr P Annual transition probability from Tree plantation (TP) to non-forest 0.0000 dimensionless Cambodia's official forest maps cambodia's official forest maps dr P Annual transition probability from Tree plantation (TP) to non-forest 0.0000 dimensionless Cambodia's official forest maps dr P Annual transition probability from Tree plantation (PP) to non-forest 0.0000 dimensionless Cambodia's official forest maps dr P Emission factor applicable for Semi-evergreen forest (SE) 135.100 (C ha ⁻¹ Cambodia's official forest reference level (FRL) Emission factor applicable for Deciduous forest (D) Gambodia's official forest reference level (FRL) Emission factor applicable for Deciduous forest (D) Gambodia's official forest reference level (FRL) Emission factor applicable for Deciduous forest (D) Gambodia's official forest reference level (FRL) Emission factor applicable for Mangrowe (MR) Gambodia's official forest reference level (FRL) Emission factor applicable for Mangrowe (MR) <td< td=""><td>P_{d MR}</td><td>within the displacement belt</td><td>0.0417</td><td>dimensionless</td><td>Cambodia's official forest maps</td><td></td></td<>	P _{d MR}	within the displacement belt	0.0417	dimensionless	Cambodia's official forest maps	
drR within the displacement beit Composition probability from Tree plantation (TP) to non-forest within the displacement bett Composition probability from Tree plantation (TP) to non-forest Composition probability from Tree plantation (TP) to non-forest Composition probability from Tree plantation (TP) to non-forest Composition probability from Tree plantation (PP) Composition Plantation forest reference level (FRL) Composition probability from Tree plantation (PP) Composition Plantation forest reference level (FRL) Composition Soficial forest reference level (FRL) Composition Soficial forest reference level (FRL) Composition Soficial for	Pd FF		0.0506	dimensionless	Cambodia's official forest maps	
drpwithin the displacement beit0.11 beitdimensionessCalmodia's official forest maps $a_{\rm drp}$ Annual transition probability from Pine plantation (PP) to non-forest within the displacement bet0.0000dimensionessCambodia's official forest maps $F_{\rm g}$ Emission factor applicable for Serrievergreen forest (E)91.3000tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm g}$ Emission factor applicable for Pine forest (P)56.5400(C ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm g}$ Emission factor applicable for Deciduous forest (D)48.2100tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm g}$ Emission factor applicable for Mangrove (M)48.2100tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm g}$ Emission factor applicable for Mangrove (MR)92.4000tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm g}$ Emission factor applicable for Rear Mangrove (MR)92.4000tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm gR}$ Emission factor applicable for Fooded forest (FF)39.800tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm FR}$ Emission factor applicable for Fooded forest (FF)39.800tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm FR}$ Emission factor applicable for Fooded forest (FF)39.800tc ha ⁻¹ Cambodia's official forest reference level (FRL) $F_{\rm FR}$ Emission factor applicable for Fooded forest (FF)39.800tc ha	Pd FR		0.0972	dimensionless	Cambodia's official forest maps	
d^{pp} within the displacement beit0.000dimensionlessCalmodals of includivest maps F_{e} Emission factor applicable for Evergreen forest (E)91.000 C_{ha}^{-1} Camboda's official forest reference level (FRL) F_{ga} Emission factor applicable for Semi-evergreen forest (SE)135.100 C_{ha}^{-1} Camboda's official forest reference level (FRL) F_{p} Emission factor applicable for Pine forest (P)66.5400 C_{ha}^{-1} Camboda's official forest reference level (FRL) F_{p} Emission factor applicable for Denoidous forest (D)48.2100 C_{ha}^{-1} Camboda's official forest reference level (FRL) F_{g} Emission factor applicable for Bamboo (B)0.0000 C_{ha}^{-1} Camboda's official forest reference level (FRL) F_{g} Emission factor applicable for Mangrove (M)84.1500 C_{ha}^{-1} Camboda's official forest reference level (FRL) F_{M} Emission factor applicable for Rear Mangrove (MR)92.4000 C_{ha}^{-1} Camboda's official forest reference level (FRL) F_{Fr} Emission factor applicable for Forest regrowth (FR)39.8000 C_{ha}^{-1} Cambodia's official forest reference level (FRL) F_{Fr} Emission factor applicable for Trep plantation (TP)65.6400 C_{ha}^{-1} Cambodia's official forest reference level (FRL) F_{Fr} Emission factor applicable for Trep plantation (TP)65.6400 C_{ha}^{-1} Cambodia's official forest reference level (FRL) F_{Fr} Emission factor applicable for Trep plantation (TP)65.6400 C_{ha}^{-1} C	P _{d TP}	within the displacement belt	0.1169	dimensionless	Cambodia's official forest maps	
F_{3E} Emission factor applicable for Semi-evergreen forest (SE) 135.1100 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) F_{p} Emission factor applicable for Pine forest (P) 56.5400 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) F_{p} Emission factor applicable for Deciduous forest (D) 44.2100 Cambodia's official forest reference level (FRL) 6 F_{B} Emission factor applicable for Bamboo (B) 0.0000 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) 6 F_{M} Emission factor applicable for Margrove (M) 84.1500 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) 6 F_{M} Emission factor applicable for Rear Margrove (M) 84.1500 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) 6 F_{FM} Emission factor applicable for Rear Margrove (M) 84.2500 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) 6 F_{FF} Emission factor applicable for Flooded forest (FF) 39.8600 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) 6 6 F_{FF} Emission factor applicable for Tree plantation (TP) 56.5400 t_{C} ha ⁻¹	P _{d PP}	within the displacement belt	0.0000	dimensionless	Cambodia's official forest maps	
FpEmission factor applicable for Pine forest (P) 66.540 t_{C} ha^1Cambodia's official forest reference level (FRL)Emission factor applicable for Deciduous forest (D) 48.210 t_{C} ha^1Cambodia's official forest reference level (FRL)FgEmission factor applicable for Bamboo (B) 0.000 t_{C} ha^1Cambodia's official forest reference level (FRL)Emission factor applicable for Mangrove (M) 84.1500 Cha ¹ Cambodia's official forest reference level (FRL)Emission factor applicable for Mangrove (M) 84.1500 Cha ¹ Cambodia's official forest reference level (FRL)Emission factor applicable for Foest ferger (M) t_{C} ha ¹ Cambodia's official forest reference level (FRL)Emission factor applicable for Foest ferger (M) t_{C} ha ¹ Cambodia's official forest reference level (FRL)Emission factor applicable for Foest ferger (M) t_{C} ha ¹ Cambodia's official forest reference level (FRL)Emission factor applicable for Foest ferger (FRL) t_{C} ha ¹ Cambodia's official forest reference level (FRL)Emission factor applicable for Foest ferger (FRL) t_{C} ha ¹ Cambodia's official forest reference level (FRL) t_{C} ha ¹ Emission factor applicable for Foest ferger (FRL) t_{C} ha ¹ Cambodia's official forest reference level (FRL) t_{C} ha ¹ t_{C} ha ¹ Cambodia's official forest reference level (FRL) t_{C} ha ¹ t_{C} ha ¹ Cambodia's official forest reference level (FRL) t_{C} ha ¹ t_{C} ha ¹ Cambodia's official forest reference level (FRL) t_{C} ha ¹ t_{C} ha ¹ Cambodia's official forest reference level (FRL) t_{C} ha ¹	EF _E					
Fp Emission factor applicable for Deciduous forest (D) 48.2100 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Bamboo (B) 0.0000 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Mangrove (M) 84.1500 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Rear Mangrove (MR) 92.4000 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Fooded forest (FF) 39.8000 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Forest regrowth (FR) 42.6000 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Forest regrowth (FR) 42.6000 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Tree plantation (TP) 56.5400 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Pine plantation (PP) 56.5400 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Pine plantation (PP) 56.5400<	EF _{SE}	· · · · · · · · · · · · · · · · · · ·				
FB Emission factor applicable for Bamboo (B) 0.000 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Mangrove (M) 84.1500 C ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Rear Mangrove (M) 92.4000 C ha ⁻¹ Cambodia's official forest reference level (FRL) Fg Emission factor applicable for Flooded forest (FF) 39.800 tC ha ⁻¹ Cambodia's official forest reference level (FRL) FfF Emission factor applicable for Flooded forest (FF) 39.800 tC ha ⁻¹ Cambodia's official forest reference level (FRL) FfFF Emission factor applicable for Tree plantation (TP) 56.5400 tC ha ⁻¹ Cambodia's official forest reference level (FRL) FfFP Emission factor applicable for Tree plantation (TP) 56.5400 tC ha ⁻¹ Cambodia's official forest reference level (FRL) FfFP Emission factor applicable for Tree plantation (TP) 56.5400 tC ha ⁻¹ Cambodia's official forest reference level (FRL) FfFP Emission factor applicable for Pine plantation (PP) 56.5400 tC ha ⁻¹ Cambodia's official forest reference level (FRL)						
FM Emission factor applicable for Mangrove (M) 84.1500 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Func Emission factor applicable for Rear Mangrove (MR) 92.4000 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Fyre Emission factor applicable for Flooded forest (FF) 39.800 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Fyre Emission factor applicable for Forest regrowth (FR) 42.6500 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Fyre Emission factor applicable for Tree plantation (TP) 56.5400 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Fyre Emission factor applicable for Tree plantation (PP) 56.5400 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Fyre Emission factor applicable for Pine plantation (PP) 56.5400 IC ha ⁻¹ Cambodia's official forest reference level (FRL)						
FMR Emission factor applicable for Rear Mangrove (MR) 92.4000 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) FFF Emission factor applicable for Flooded forest (FF) 39.800 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) FFR Emission factor applicable for Flooset regrowth (FR) 42.6500 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) FFF Emission factor applicable for Tree plantation (TP) 56.5400 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) FFp Emission factor applicable for Tree plantation (TP) 56.5400 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL) FFp Emission factor applicable for Pine plantation (PP) 56.5400 t_{C} ha ⁻¹ Cambodia's official forest reference level (FRL)						
Fr _P Emission factor applicable for Flooded forest (FF) 39.8600 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fr _R Emission factor applicable for Forest regrowth (FR) 42.6600 tC ha ⁻¹ Cambodia's official forest reference level (FRL) Fr _P Emission factor applicable for Tree plantation (TP) 56.5400 (C ha ⁻¹ Cambodia's official forest reference level (FRL) Fr _P Emission factor applicable for Tree plantation (TP) 56.5400 (C ha ⁻¹ Cambodia's official forest reference level (FRL) Fr _P Emission factor applicable for Pline plantation (PP) 56.5400 tC ha ⁻¹ Cambodia's official forest reference level (FRL)						
Fr _R Emission factor applicable for Forest regrowth (FR) 42.6500 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Fr _P Emission factor applicable for Tree plantation (TP) 56.5400 IC ha ⁻¹ Cambodia's official forest reference level (FRL) Fr _P Emission factor applicable for Pine plantation (PP) 56.5400 IC ha ⁻¹ Cambodia's official forest reference level (FRL)						
FTp Emission factor applicable for Tree plantation (TP) 56.5400 tc ha ⁻¹ Cambodia's official forest reference level (FRL) FFpp Emission factor applicable for Pine plantation (PP) 56.5400 tc ha ⁻¹ Cambodia's official forest reference level (FRL)						
FPp Emission factor applicable for Pine plantation (PP) 56.5400 tr C ha ⁻¹ Cambodia's official forest reference level (FRL)	-F _{FR}					
Input on "MPS(input_PJ_Opt1 - GJ kg ⁻¹ 2006 IPCC Guidelines Tables 1.2 Input on "MPS(input_PJ_Opt1			56.5400			
	NCV _f EF _{fuel f}		-			Input on "MPS(input_PJ_Opt1)" s Input on "MPS(input_PJ_Opt1)" s

Table3: Ex-post calculation of CO2 emission reductions to be credited

Monitoring period									
12 March 2018 to 31 December 2020	du	ring period p	900,770	tCO ₂ /p					
	Year	2018	278,017						
		2019	323,988	tCO ₂ /y					
		2020	298,765	tCO ₂ /y					
		2021	0	tCO ₂ /y					
		2022	0	tCO ₂ /y					
		2023	0	tCO ₂ /y					
		2024	0	tCO ₂ /y					
		2025	0	tCO ₂ /y					
		2026	0	tCO ₂ /y					
		2027	0	tCO ₂ /y					
		2028	0	tCO ₂ /y					
		2029	0	tCO ₂ /y					

[Monitoring option]

Option A	Based on public data which is measured by entities other than the project participants (Data used: publicly recognized data such as statistical data and specifications)
Option B	Based on the amount of transaction which is measured directly using measuring equipments (Data used: commercial evidence such as invoices)
Option C	Based on the actual measurement using measuring equipments (Data used: measured values)

Monitoring Spreadsheet: JCM_KH_AM004_ver01.1

		_																				-							terence Num	1001.111000
Parameters										A _{i,y}											ΔC	Sref y						RLy	d _y	d _{0y}
Description o	of data						Ar	rea of fores	st class <i>i</i> in	the project	area in year	у					Projected carbon stock change in the project area in year y							Project reference level in year y	number of operating days in vear v	number of days in year y				
Units										ha												tC						tCO ₂ y ⁻¹	days	days
Forest class i	i	Evergr forest	reen Sem ever fores	green	Pine forest	t forest	luous t	Bamboo	Mangrove	Rear Mangrove	Flooded forest	Forest regrowth	Tree plantation	Pine plantation	non forest	Evergreen forest	Semi- evergreen forest	Pine forest	Deciduous forest	Bamboo	Mangrove	Rear Mangrove	Flooded forest	Forest regrowth	Tree plantation	Pine plantation	non forest	-	-	-
Inception of the project	20			16819	C		8638	1014		o (o i	2418) () () -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20		6,686 1	16,399	0	3 1	8,397	1,002) (0	2,228	. () (2,027				11,611		0 ()	0	0 8,100		0 0	0 0	670,101	295	365
	20 [.]	19 55	5,275 1	15,892	0		8,107	988) (0	2,011) (4,465				13,966		0 ()	0	0 9,23		0 0	0 0	808,618		365
	20:	20 53	3,898 1	15,401	0) :	7,827	974) (0	1,816	i () (6,822		66,347	0	13,484		0 ()	0	0 8,338	в (0 0	0 0	784,038	366	366
	20: 20:	21 52		14,925			7,557	960) (0	1,639) (9,100		0	0 0	0		0 (0	0	0 0	0 (0 0	0 0	C		
	20:	22 51		14,464			7,297	947		0 0	0	1,480	0 0) (11,303		0	0 0	0		0 ()	0	0 0	0 0	0 0	0 0	C		
Year	20	23 49		14,017			7.045	933	(0 0	0	1,336	i () (13,435		0	0 0	0		0 ()	0	0 0	0 (0 0	0 0	C	1	
	20	24 48		13,584			6,802	920		0 0	0	1,206) (15,499		0	0 0	0		0 ()	0	0 0	0 (0 0	0 0	C	1	
	20:			13,164			6,567	907		0 0	0	1.089	() (17,497		0	0 0	0		0 ()	0	0 0	0 (0 0	0 0	C	1	
	20	26 46		12,757			6,341	895	(0 0	0	0 983 0 888	() (19,432		0	0 0	0		0 ()	0	0 0	0 (0 0	0 0	C	1	
	20			12,363	0		6,122	882		0 0	0) (21,306		0	0 0	0		0 ()	0	0 0	0 (0 0	0 0	C	1	
	20			11,981	0		5,911	869		0 0	0	0 801) (23,123		0	0 0	0		0 (0	0	0 0	0 0	0 0	0 0	C		
	20:	29 42	2,955 1	11,611	0) :	5,707	857	(0 0	0	723) (24,884	L C	0	0 0	0		0 (0	0	0 0	0 0	0 0	0 0	C		
	Total		-	-		-	-	-		-	-	-					-	-	-		-	-	-	-	-	-	-	2,262,758	-	-

ission from carbon stock- smotors																		ΔC							AC					
cription of data			An	ea converte	d from fores	at classs / to m	on-forest in	the project a	nea in year ;	7					Carbon stoc	k change i	n area conver	ted from fore	nt class / to r	non-fonest in	the project i	insa in year	7		Carbon at in the pro ye	ock change ject area in ar y				
•		1e				ha								1 e	r	1	-		1C					r		c				
st class /	Evergreen forest	Semi- evergreen freest	Pine forest	Deciduous forest		Mangrove	Rear Mangrove	Flooded forest	Forest regrowth	Tree plantation	Pine plantation	non forest	Evergreen forest	Semi- evergreen format	Pine forest	forest	us Bamboo	Mangrove	Mangrove	Flooded forest			Pine plantation	non forest	*	est.				
	018	144	0	805 745	201	0	-	-	213				0.00	10 740 5 24.448.7 24.515.7		0 20 157 0 36.076		0.00	0.00		9.031.17 11.174.16 11.204.77	0.00	0.0	0.0	2	57,949 71,699 71,896				
	020	101		.06							<u> </u>	-	0.0	0.00	0 0.00	36.075 36.175 0 0	00 0.0	0 0.00	1 0.00		0.00	0.00	0.00	0.0		0				
Year 2	023												0.0	0.0	0 0.00	<u>a</u> a		0 0.00		0.00	0.00	0.00	0.00	0.0	5	0				
	025												0.0				00 0.0		0.00	0.00	0.00	0.00	0.00	0.0	2	0				
	078												0.0	0.0			00 0.0		1 0.00	0.00	0.00	0.00	0.00	0.0		000				
Total												-	-	-		-		•								201,543				
salona from fosail fuel co	mbustion (Dire							FF			1																			
emotors cription of data 3			GJ kg ⁻¹	fuel f		CO ₂ e	mission fact	tCO ₂ GJ	l type f com	busted																				
i type f	Gas/desel		Crude oil			Gas/desel of	Motor	Crude oil			1																			
	0.043	0.0447	0.0423			0.0741	0.0693	0.0733	4		1																			
isalons from fossil fuel co amoters	mbustion (Din	ct method)	FC ₁					E _{ball} ,			Elate	(direct)																		
						CO ₂ emissi	ona teom co	mbustion of	fosail fuel ty	me f in veer	CO ₂ emissi fossil fuel in year y c project act	ions from combustion																		
cription of data		uantity of fuel	type / consu	med in yea	· *			y		,	in year y o project act method)	tue to the ivities (direct																		
18	Gas/desel	Motor	kg			Gas/desel	Mater	1CO;			i i i	20,	1																	
l type f		3.577	Crude oil			oil 0.0	resoline 11.0	Crude oil	0.0	0.0		- 11.0 14.																		
	019	4 505		-		0.0	14.1	0.0	0.0	0.0		14.																		
	021	-				0.0	0.0	0.0	0.0	0.0		0.0																		
Year 2	024 025					0.0	0.0	0.0	0.0	0.0		0.0																		
	027	-				0.0	00	0.0	0.0	0.0		01																		
Total	170	L .				0.0	0.0	0.0	0.0	200		41.3																		
asions from fosail fuel co													-																	
icle type I type f	enduarien (ind	rect method)														-	-	-												
	Average ap	ecific energy	SEC ₁₁ consumption	of vehicle o	r equipmen	0.0000	0.0000	NCV; 0.0000	0.0000	0.0000								1												
ue		type ka	consumption (for fuel type (km ⁻¹ or hour)	e /			0.0000	FF			NA	NA	NA	NA	NA		NA													
arrefers			NVEur			0.0000	0.0000	TDU _{if y}	0.0000	3 0.0000			Ehelly			E _{ba}	(indirect)													
cription of data	Number	d vehicle or e	quipment type	e / using fu	el type f in	Total tran	el datance	for vehicle t	ype / oruse https://in.ve	hours for	CO ₂ em	asions from	fossil fuel co	mbustion in	vehicle for	in year y	asions from al combustion r due to the													
						equ				,		upment typ		- yper in y	7	project a (indirect	ctivities method)													
	018	-	unt		-		k	n or hour ur		-	01		1CO,	-	a ac	-	1CO;	00												
	020										0.0	2 01	2 01	2 0	0 00	0	0.													
Year	022										01						0													
	024										01					a	01													
	027										0.0	0.00	0.0	0	0 00	o.	0.	00												
Total	076										01	0.01	0.0		n nr	-	0	0												
ilaaion from fertilizer apoli ramelera	cation																													
amelera	Ntroger	C _{INs} content of ic fertilizer propland type	NC Nitrogen c organic t applied in	content of	Fraction of	Frac _{iteres} t total area un nat la renewer	der N-fixing	Ratio of al	R _{MD T}	f reaidues to	Ratio of b	R _{BD T} elow-ground i yield for N-I	residues to	N cor	N _{ING T} start of above as for N-fxin	e-ground	Nicon	N _{BGT} itent of below ea for N-fain	eground											
scription of data		ic fertilizer popland type ertilizer)		cropland		tat is renewer			yield for N-8 d.m. (t.d.m.			i yield for N-I t d.m. (t d.m		reaidu	t N (t d.m.)			es for N-fixin t N (t.d.m.)												
ta Ipland type c / N-lixing cro	Ceneral (non- paddy)	Rice paddy	tN (t fert General (non- paddy)	Rice		Bears & pulses			d.m. (t.d.m. Beans & pulses			Beans & pulses		Beans &	Beans & pulses			Bears & pulses												
ue	padbó		coddw)	paddy	pubes 1.000	pulses		pulses 1,054			pulses 0.54-			pulses 0.00			pulses 0.00													
		Di sy	Mo		_		Cro				_			Шату				Dieg.	Fo		Fo				M			Elminary		_
annerată		an sy	M	,			0.00	y						Ty			<u> </u>									Direct N-O	Indirect N ₂ O		CO;	
			Mass of	organic															Mass of n	itrogen in	Mass of r	itrogen in ses (above- nd below- n N-fixing oduced for ation of the ctivities in ype c in the se and the	Mass of calcic limestone (CaCO ₃)	Mass of dolomite		emissions	ernissiona	missions en		
	Mass o	f synthetic applied for tation of the activities in type c in the rea and the ea in year y	Mass of festilizer m materials so outside of t area and t area and s implements project ac cropland ty project are	use from surced from													Mass of synthet	nitrogen in tic fertilizer fied for station of the activities in type c in the	from materi	als sourced tside the	ground a ground i	nd below- n N-fixing	(CaCO ₃)	slo)	tertilizer applied for implement	of nitrogen application	as a result of nitrogen application within the resident			1 22 2
cription of data	implement project	tation of the	area and the	he activity applied for	Harvest	ed annual dry I for implemen in the projec	matter yiel	d for N-fixing	crop 7 per	unit area, pland type c	Total	annual area	harvested o	of N-fixing c ities in cros	rop 7, introdu land type c in year y	uced for in the proje	app implement	fied for station of the	project and activity a	and the area and	crops, intr implement	oduced for ation of the	applied for implement ation of		ation of	within the project area and	within the project	project p		ļ
	cropland project a	type c in the rea and the	implements project ac	ation of the tivities in		in the project	tares and t	the activity a	nea in year ;	7		area	and the act	ivty area in	year y		cropland t	type c in the	implements	ation of the	cropland to	pe c in the	the project activities in	the project activities in	the project activities in the project	the activity area for	project area and the activity area for	area and a to activity the	e activity	*
	activity a	ea in year y	cropland ty project are activity are	pe c in the is and the a in year ~													activity at	nea and the rea in year y	Mass of n organic fert from materi from out project are activity a project are activity are	pe c in the as and the	activity a returned to	area and to soils, in	the project area and the activity area in year y	area and the active	area and the activity	ation of	area tor implement ation of the project if activities in a	area for a replement in ation of a re project the	plement	1
				.,,															activity are	a in year y	yes	r y	area in year y	area in year y	area in year y	the project activities in year y	the project is activities in a	the project the clivities in ac	dybes in	1) 80
ta			t				t d.m	. ha"						ha				1N		N		N	1	1	1	tCO-ep	year y tCO-ep	year y :	year y	,
pland type c	(non-	Rice paddy	(non-	Rice caddy		neral (non-pa			Rice paddy	,		neral (non-p	addy)	Base	Rice paddy	v	(non-		(son-	Rice paddy	(non-	Rice paddy	NA	NA	NA	NA	NA	NA.	NA	
ixing crop 7	NA	NA	NA	NA	rolan	Bears &		dearts &	Beans &		Beans &	Beans & reduce		Beans & reduce			NA	NA OC	NA 0.0	NA	NA	NA 0.0	NA	NA	NA	NA 0.0	NA 0.0	NA 0.0	NA 0.0	
	018 019 020				13			14			0.0	8		0	0		0	0 0.0		0.0	0.0	0.0				0.0	0.0	0.0	0.0	
	022	-								-		+	+	+	+	-	0	0 00	1 00	0.0	0.0	0.0		+		0.0	0.0	0.0	0.0	
Year 2	023	-								-		-	-	-	1	-	0	n nr		0.0	0.0	0.0		-	-	0.0	0.0	0.0	0.0	
										1		1	1		1	1	0.	0 0.0	0.0	0.0	0.0	0.0		1		0.0	0.0	0.0	0.0	
	026 027																01	0.00	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0	
	026 027 038 020																0	n nr	1 00	0.0	0.0	0.0				0.0	0.0	0.0	0.0	

Displaced emission					
Parameters	Asiy	ΔCS _{ey}	CA _{egij}	ACS _{4 NY}	DR, DP, DE, d, do, ACSd pl
Description of data	Area of forest class / in the displacement belt in year y	Projected carbon stock charge in the displacement belt in year γ	Area converted from forest class / to ron-forest in the displacement belt in year γ	Actual carbon stock change in the displacement belt in year y	Reference on the first set of the
Units	ha	iC iC	ha	1C	1CO- 1CO- 1CO- days days 1C
Forest class /	Evergreen forest	ast Evergreen Serri- foreat breat Prine foreat Deciduous Bamboo Mangrove Rear Plooded Foreat Tree Pine Invest	Evergreen Sami- swerpreen Pres forest Deciduous Bamboo Mangrow Rear Mangrove forest regrowth Plantation Plantation non-forest	Evergreen Semi- foreat evergreen Pine foreat Deciduous Bamboo Mangrove Rear Mangrove forest regrowth plantation Pine non forest	t total
Inception of 2010	10 6,241 5,161 0 4,395 184 0 0 0 621 0 0	a			
2011		428 11.488 17.414 a 5.910 o o o o a 2.080 o	ब डहा हो हो उन्हें उन्हें की ही ही ही है।	ସି 51,247 ସି ରାଗରେ କୋର୍ଯ୍ୟ କାର୍ଯ୍ୟ କାର	0 135.191.8 245.281.8 110.090.0 295.0 365.0 66.895
2011	17 5.953 4.877 0 4.125 179 0 0 0 0 517 0 0 s	H1 13.901 21.008 0 7.108 0 0 0 0 2.372 0	1 524 of a 402 555 of a a a a of i	ର ସେ-408 ରା ର	0 162,762,3 303,484,3 140,722,0 365,0 365,0 82,768
2021	20 5.814 4736 0 1984 177 0 0 0 466 0 0 14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>8 886 0 0 400 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>	त हा बता व त त त त त त त त	0 157 308 4 304 315 7 146 047 4 305 0 305 0 87 005
202	2 5863 4500 0 3.846 174 0 0 0 421 0 0 13	*** * * * * * * * * *			<u>a oo oo oo oo oo</u>
202	** 5528 4438 0 3.714 172 0 0 0 380 0 0 2.	254 24 24 24 24 24 24 24 24 24 24 24 24 24			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Year 2007					4 00 00 00 00
2020					a ad ad ad ad
202	7 4 960 3915 0 3227 163 0 0 0 252 0 0 40				a oa oa oa oa
202	3 4873 3794 0 3116 160 0 0 0 728 0 0 4				a oa oa oa oa
2021	T 4.752 3.677 0 3.008 158 0 0 0 0 208 0 0 44			ਂ ਹੋ ਹੋ ਕੇ ਕੇ ਕੇ ਕੇ ਕੇ ਕੇ ਕੇ ਕੇ ਕੇ	0,0 0,0 0,0 0,0 0,0
202	ন্ত ৭,634 3,563 ০ 2,904 155 ০ ০ ০ ০ ৫ 186 ০ ০ ১	1920 a a a a a a a a a a a			a aa aa aa aa
Total					455 322 5 853 081 8 307 750 3 232 650

 Image: Second second

Iculations for emission red	ductions to be credited	Pool / Sources	Value	Units	Paramet
roject emission reductions to	b be credited during the period p		900,771.8	tCO ₂ e	ERp
Project emission reductio	ns to be credited in year y				
	2018		278,017.9	tCO ₂ e	ERy
	2019		323,988.5	tCO ₂ e	ERy
	2020		298,765.4	tCO ₂ e	ER,
	2021		0.0	tCO ₂ e	ER,
	2022		0.0	tCO ₂ e	ER,
	2023		0.0	tCO ₂ e	ER,
	2024		0.0	tCO ₂ e	ER
	2025		0.0	tCO ₂ e	ER,
	2026		0.0	tCO ₂ e	ER
	2027		0.0	tCO ₂ e	ER
	2028		0.0	tCO ₂ e	ER
	2029		0.0	tCO ₂ e	ER
lculations for project refer	ence level				
roject reference level during	period p		2,262,757.7	tCO ₂ e	RL
Project reference level in	year y				
	2018	Carbon stock	670,101.5	tCO ₂ e	RL
	2019	Carbon stock	808,618.4	tCO ₂ e	RL
	2020	Carbon stock	784,037.8	tCO ₂ e	RL
	2021	Carbon stock	0.0	tCO ₂ e	RL
	2022	Carbon stock	0.0	tCO ₂ e	RL
	2023	Carbon stock	0.0	tCO ₂ e	RL
	2024	Carbon stock	0.0	tCO ₂ e	RL
	2025	Carbon stock	0.0	tCO ₂ e	RL
	2026	Carbon stock	0.0	tCO ₂ e	RL
	2027	Carbon stock	0.0	tCO ₂ e	RL
	2028	Carbon stock	0.0	tCO ₂ e	RL,
	2029	Carbon stock	0.0	tCO ₂ e	RL

oject net emissions during period p			1,136,793.0	tCO ₂ e	Pep
Emissions from carbon stock change in the project area in	year y				
	2018 Car	rbon stock	212,478.2	tCO ₂ e	ΔCS _{pi y} *4
	2019 Car	rbon stock	262,896.7	tCO ₂ e	ΔCS _{pj y} *4
	2020 Car	rbon stock	263,617.0	tCO ₂ e	ΔCS _{pi y} *4
	2021 Car	rbon stock	0.0	tCO ₂ e	∆CS _{pi y} *4
	2022 Car	rbon stock	0.0	tCO ₂ e	ΔCS _{pi y} *4
:	2023 Car	rbon stock		tCO ₂ e	ΔCS _{pi y} *4
:	2024 Car	rbon stock	0.0	tCO ₂ e	ΔCS _{pi y} *4
:	2025 Car	rbon stock	0.0	tCO ₂ e	ΔCS _{pj y} *4
:	2026 Car	rbon stock		tCO ₂ e	ΔCS _{pi y} *4
	2027 Car	rbon stock		tCO ₂ e	ΔCS _{pi y} *4
		rbon stock		tCO ₂ e	ΔCS _{pi y} *
		rbon stock		tCO ₂ e	ΔCS _{pi y} *
CO ₂ emissions from fossil fuel combustion in year y	2020 00.		0.0		===pj y
	2018 Cor	mbustion of fossil fuels	11.0	tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	Efue
		mbustion of fossil fuels		tCO ₂ e	
		mbustion of fossil fuels		tCO ₂ e	Efue
				tCO ₂ e	Efue
GHG emissions from fertilizer application in year y	2029 001	mbustion of fossil fuels	0.0	10020	Efue
	2018 Eor	tilizer application	0.0	tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
		tilizer application		tCO ₂ e	Efertiliz
Displacement of net emissions in year y				-	
	2018 Car	rbon stock	110,090.0	tCO ₂ e	DE
		rbon stock	140,722.0		DE
		rbon stock	146,947.4	-	DE
		rbon stock		tCO ₂ e	DE
		rbon stock		tCO ₂ e	DE
		rbon stock		tCO ₂ e	DE
		rbon stock		tCO ₂ e	DE
		rbon stock		tCO ₂ e	DE
		rbon stock		tCO ₂ e	DE
		rbon stock		tCO ₂ e	DE
		rbon stock		tCO ₂ e	DE
					_
	2029 Car	rbon stock	0.0	tCO ₂ e	DE
culation of discount factor			20	o.	DF

Emission factor for N ₂ O emission from N inputs for general (non-paddy)	0.01	tN ₂ O-N (tN- input) ⁻¹	EF _{direct-N} (general)
Emission factor for N ₂ O emission from N inputs for Rice paddy (flooded rice field)	0.003	tN ₂ O-N (tN- input) ⁻¹	EF _{direct-N} (paddy)
Fraction that volatilized as NH ₃ and NOx for synthetic fertilizers		dimensionless	Frac _{sn}
Fraction that volatilized as NH ₃ and NOx for organic	0.20	dimensionless	Frac _{on}
Emission factor for N ₂ O emissions from atmospheric deposition of N on soils and water surfaces	0.010	tN ₂ O-N (tNH ₃ -N and NO _X -N volatilized) ⁻¹	EF _{indirect-N}
Fraction of N that is lost through leaching and runoff	0.30	dimensionless	Fracleach
Emission factor for N_2O emissions from N leaching and runoff	0.0075	tN ₂ O-N (t leaching and runoff) ⁻¹	EF _{leach-N}
Emission factor for limestone	0.12	tC (t limestone)	EFlimestone
Emission factor for dolomite	0.13	tC (t dolomite) ⁻¹	EF _{dolomite}
Emission factor for urea	0.20	tC (t urea) ⁻¹	EF _{urea}
Global Warming Potential for N ₂ O	298	tCO ₂ tN ₂ O ⁻¹	GWP _{N2O}
Net calorific value of gas/diesel oil	0.043	GJ kg ⁻¹	NCV _f
Net calorific value of motor gasoline	0.0443	GJ kg ⁻¹	NCVf
Net calorific value of crude oil	0.0423	GJ kg ⁻¹	NCVf
CO ₂ emission factor of gas/diesel oil combusted	0.0741	tCO ₂ GJ ⁻¹	EF _{fuel f}
CO ₂ emission factor of motor gasoline combusted	0.0693	tCO ₂ GJ ⁻¹	EF _{fuel f}
CO ₂ emission factor of crude oil combusted	0.0733	tCO ₂ GJ ⁻¹	EF _{fuel f}

Monitoring Report Sheet Attachment

1. Monitoring sites of the ground-based survey(s) $% \label{eq:constraint}$

Description of data	Monitoring sites (Map and locations)
No ground-based survey for the monitoring of net project emissions was conducted.	

2. Reassessment of project reference level

We didn't reassess as it was less than five years since the establishment of the reference level.

3. Recording and archiving data

Description of data	Actual situation of recording and archiving	
Area converted from forest class i to non- forest in the project area in year y	Ministry of Environment, Cambodia, provided data to CI, and CI keeps it in a Sharepoint folder.	
Area converted from forest class i to non- forest in the displacement belt in year y	Ministry of Environment, Cambodia, provided data to CI, and CI keeps it in a Sharepoint folder.	
(Direct method) Quantity of fuel type f consumed in year y	Staff, who purchased fuel, submitted receipts to their organization, and the receipts were kept both in paper and in PDF.	
Harvested annual dry matter yield for N- fixing crop T per unit area, introduced for implementation of the project activities in cropland type c in the project area and the activity area in year y	Public data (FAOSTAT)	
Total annual area harvested of N-fixing crop T, introduced for implementation of the project activities in cropland type c in the project area and the activity area in year y	Sansom Mlup Prey Cambodia recorded area and provided to CI. CI kept the data I a Sharepoint folder.	
Ratio of above-ground residues to harvested yield for N-fixing crop T	Public data (IPCC and FAOSTAT)	
Ratio of below-ground residues to harvested yield for N-fixing crop T	Public data (IPCC and FAOSTAT)	
N content of above-ground residues for N- fixing crop T	Public data (IPCC)	
N content of below-ground residues for N- fixing crop T	Public data (IPCC)	
Fraction of total area under N-fixing crop T that is renewed annually	CI interviewed to Sansom Mlup Prey Cambodia and recorded in Project Management Cord (excel sheet) in a Sharepoint folder.	

AI	ne	< _