JCM Proposed Methodology Form for REDD-plus

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Partner Country	Kingdom of Cambodia
Name of the methodology proponents	Conservation International and
submitting this form	Mitsui & Co., Ltd.
Title of the proposed methodology and version	Reducing deforestation and forest degradation
number	through forest conservation in Cambodia,
	version 1.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
Date of submission	04/04/2019

History of the proposed methodology

Version	Date	Contents revised
1.0	04/04/2019	First edition

A. Title of the methodology

Reducing deforestation and forest degradation through forest conservation in Cambodia, version 1.0

B. Terms and definitions

Terms	Definitions
Cambodia's official forest	Cambodia's official forest reference level (FRL) is defined
reference level (FRL)	as the most recent and available forest reference level
	submitted to the UNFCCC secretariat by Cambodia and
	completed technical assessment by the UNFCCC's
	assessment team.
Cambodia's official forest map	A land use and land cover map, endorsed as an official map,
	named Forest Cover, by the Government of Cambodia. The
	generation of additional landcover data are expected every 2
	years, e.g., Forest Cover 2018 and Forest Cover 2020.
Transition probability	A probability that a forest class will be changed to another
	forest class, or be converted, to non-forest, based on the
	historical pace of transition. Transition probability is between
	0 to 1.
Methodology guidelines	Joint Crediting Mechanism Guidelines for Developing
	Proposed Methodology for Reducing Emissions from
	Deforestation and Forest Degradation, and the Role of
	Conservation, Sustainable Management of Forests and
	Enhancement of Forest Carbon Stocks in Developing
	Countries (REDD-plus)

C. Summary of the methodology

Items			Sun	nmary		
Project activities				st conservation		
	enforcement	and/or	livelihood	development	projects,	including

(emission reduction	agricultural improvement, eco-tourism development, marketing of non-
,	timber forest products and formation/strengthening of community groups
measures)	that lead to the reduction of emissions from deforestation and
	degradation.
Establishment of	Two options have been identified to establish the project reference level, using data from Cambodia's official forest reference level (FRL):
project reference	(1) applying the FRL transition probabilities from forest to non-
level	forest classes only, to the project area, (e.g., transitions between
	different forest classes are not included);
	(2) applying all the FRL transition probabilities among classes that would result in emissions to the project area.
	Note that Option (1) accounts for emissions from only deforestation,
	while Option (2) accounts for emissions from forest degradation in form
	of transitions from one forest class to another, in addition to those from
	deforestation. Option 2 is similar to the method used in the Cambodia's FRL
	submission in 2017, except that the FRL includes removals as well; this
	methodology targets only emissions.
Calculation of	Project net emissions are estimated based on the result of monitoring of forest to non-forest classes (Option 1) and monitoring of forest to non-
project net	forest or another forest class (Option 1) and monitoring of forest to non- forest or another forest class (Option 2) within the project area,
emissions	multiplied by the emission factors (including both above and below
	ground biomass) plus any displaced emissions within the displacement
	belt and GHG emissions due to the project activities inside the activity area.
	Displaced emissions are calculated as increases of emissions in the
	displacement belt compared to the reference emissions, i.e. those that
	would have occurred in the absence of the project.
	Use of fuel and fertilizers, for the implementation of the project
	activities, are included as GHG emissions sources, and will be monitored
	and accounted as project emissions. Cambodia's official forest map is obtained from Cambodian government
Monitoring	and used for monitoring of emissions from forest to non-forest classes
parameters and	(Option 1) and monitoring of emissions from forest to non-forest or
methods	another forest class (Option 2) in the project area and displacement belt.
	Quantities of fuel and fertilizers including N-fixing crops, used for the
	implementation of the project activities, are recorded and reported. If the
	GHG emissions, due to use of fuel or fertilizers, are estimated to be less
	than five percent of the project net emissions, actual quantities of fuel
	and/or fertilizers do not need to be monitored, and conservatively estimated planned quantities can be used for calculation of GHG
	emissions.
Calculation of	A default discount factor of 20%, as defined in the methodology
project emission	guidelines, is applied to project emissions reductions to account for the risk of reversal.
reductions to be	115K 01 10 v015d1.
credited	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Cambodia's official forest reference (emission) level has been submitted to
	UNFCCC, completed technical assessment by UNFCCC, and is available for the
	project participant.
Criterion 2	Cambodia's official forest map for the project start year or less than two years
	old is available for the project participant.
Criterion 3	Project activities which lead to GHG emissions, except for the use of fuel or
	fertilizer including N-fixing crops, are not implemented within the project area
	and the project activity area.
Criterion 4	The project activities do not include expansion of paddy field.

E. Geographical Boundaries

Essential

Geographical boundary	Requirements
Project area	No requirements in addition to those described in paragraphs 17 to 22 of the methodology guidelines ver01.0 (JCM_KH_GL_PM_REDD+_ver01.0)
Reference area	The land area of Cambodia is used to keep consistency with FRL.

Optional boundaries

Geographical boundary	Required (Y/N/TBD)	Additional requirements
Activity area	Y	No requirements in addition to those described in paragraph 17 and 21 of the methodology guidelines ver01.0.
Displacement belt	Y	Displacement belt is the forest which is located outside of the project area, where deforestation and forest degradation could occur due to the displacement of project activities, such as small- scale logging, agricultural encroachment, and collection of non-timber forest products. The displacement belt is delineated on the basis of information on the impact of project activities which are obtained from local experts and other sources. If other REDD+ projects exist within the belt, project areas of these projects are excluded from the displacement belt. If Economic Land Concessions (ELCs) exist within the belt, those areas are also excluded because deforestation is planned inside these ELCs regardless the project activities.

TBD: to be decided by the project participant

F. Carbon pools and GHG sources

The net emission sources to be considered include all the following Carbon pools and GHG sources.

	Projec	ct reference lev	vel
Carbo	Carbon pools and GHG sources		Explanation
	Above ground biomass	Y	This pool is expected to contribute significantly to emissions and emission reductions and is therefore included.
	Below ground biomass	Y	This pool is expected to contribute significantly to emissions and emission reductions and is therefore included.
Carbon pools	Dead wood	N	It is expected that this pool would have decreased in the absence of the project and, therefore, it is conservatively excluded.
	Litter	N	It is expected that this pool would have decreased in the absence of the project and, therefore, it is conservatively excluded.
	Soil organic carbon	N	It is expected that this pool would have decreased in the absence of the project and, therefore, it is conservatively excluded.
GHG			
sources			
Project net emissions			ns
Carbon pools and GHG sources		Included (Y/N)	Explanation
Carbon pools	Above ground biomass	Y	This pool is expected to contribute significantly to emissions and emission reductions and is therefore included.
	Below ground biomass	Y	This pool is expected to contribute significantly to emissions and emission reductions and is therefore included.
	Dead wood	N	It is expected that this pool would have decreased in the absence of the project and, therefore, it is conservatively excluded.
	Litter	Ν	It is expected that this pool would have decreased in the absence of the

			project and, therefore, it is conservatively excluded.
	Soil organic carbon	Ν	It is expected that this pool would have decreased in the absence of the project, and therefore, it is conservatively excluded.
GHG	CO ₂ emissions from combustion of fossil fuels		This GHG source is estimated if the project activities which include combustion of fossil fuels are implemented.
sources	N ₂ O and CO ₂ emissions from fertilizer application		This GHG source is estimated if the project activities which include nitrogen application.

G. Establishment of project reference level		
G.1. Establishment of project reference level		
Approach for estimating project reference level	In order to maximize consistency, the project reference level is established by applying emission factors and transition probabilities from the FRL.	

<u>Reference area and reference period</u> are the same as the FRL, and therefore the reference area is the total of Cambodia's land area. The reference period is the same as the reference period submitted in the FRL to the UNFCCC. In the FRL submitted in 2017; the reference period was 2006 to 2014.

<u>Calculation of transition probability</u> is done by applying one of two options provided in this methodology: (1) Option 1: using the FRL transition probabilities from forest to non-forest classes only (i.e., transitions *between* different forest classes are not included); or (2) Option 2: using all the FRL transition probabilities among classes that would result in GHG emissions. The option selected should also be used for calculation of project net emissions in section H and for determining data and parameters fixed *ex ante* in section J. The option is selected in coordination with Government of Cambodia and project participants.

<u>Yearly reference emission</u> at the project reference level is calculated by applying the transition probabilities to areas of forests at the previous year and multiplying by emission factors.

G.2. Calculation of project reference level

The project reference level at year y during the proposed crediting period is calculated as follows: $RL_y = \Delta CS_{ref y} * 44/12$ Equation 1

Equation 3

Where:	
RL_y	Project reference level at year y; tCO ₂
ΔCS_{refy}	Projected carbon stock change in the project area at year y; tC
44/12	Conversion factor of molecular weight of carbon to CO ₂

 $\Delta CS_{ref y}$ is calculated by applying either Option 1 or Option 2 selected in coordination with government of Cambodia and project participants.

Option 1: Use the FRL transition probabilities from forest to non-forest classes only

Carbon stock change in the project area at year y is calculated as follows: $\Delta CS_{ref y} = \sum_{i} (A_{i y} * P_{i} * EF_{i})$ Equation 2

Where:

$\Delta CS_{ref y}$	Projected carbon stock change in the project area at year y; tC
A _{i y}	Area of forest class <i>i</i> in the project area at year <i>y</i> ; ha
i	forest class in the project area; dimensionless
Pi	Annual transition probability from forest class <i>i</i> to non-forest within the reference area;
	0-1
EFi	Emission factor applicable for forest class i ; tC ha ⁻¹

Area of land use category *i* is assumed to decrease every year due to deforestation, and therefore calculated as follows:

$$A_{i y+1} = A_{i y} * (1 - P_i)$$

Where:

A_{i y+1} Area of forest class *i* at year y + 1; ha

 A_{iy} Area of land forest class *i* in the project area at year *y*; ha

P_i Annual transition probability from forest class *i* to non-forest within the reference area; 0-1

Please refer to section J for determination of EF_i , $A_{i\,0}$ (area at the initial year) and P_i .

Option 2: Use all the FRL transition probabilities among classes that would result in GHG emissions.

To estimate the total emissions, the projected carbon stock change at year y in the project area is

calculate	ed as follows:
ΔCS_{ref}	$V_{y} = \sum_{i} \sum_{j} c s_{ijy} \begin{cases} c s_{ijy}, & \text{if } c s_{ijy} > 0\\ 0, & \text{otherwise} \end{cases}$ Equation 4
Where:	
ΔCS_{refy}	Projected carbon stock change in the project area at year y; tC
cs _{ij y}	Projected carbon stock change in the project area from changes of land use category
	i to j at year y ; tC
The not	ation cs_{ij} is an element of <i>i</i> -by- <i>j</i> cross-tabulation matrix MCS _y which is a product of
element	-wise multiplication (Hadamard product) of <i>i</i> -by- <i>j</i> matrices of area changes and emission
factors.	
$MCS_y =$	$ MCA_y * MEF $ Equation 5
Where:	
MCS _y	<i>i</i> -by- <i>j</i> matrix in which each element is projected carbon stock change in the project
	area from changes of land use category <i>i</i> to <i>j</i> in the project area at year y, cs_{ijy} ; tC
MCA _y	<i>i</i> -by- <i>j</i> matrix in which each element is projected area of land converted from land
	use category <i>i</i> to <i>j</i> in the project area at year <i>y</i> , ca_{ij} , ba_{ij}
MEF	<i>i</i> -by- <i>j</i> matrix in which each element is emission factor for area of land converted
	from land use category <i>i</i> to <i>j</i> , EF_{ij} ; tC ha ⁻¹
	n 5 is expressed as below:
$\begin{bmatrix} CS_{11y} \\ CS_{24} \end{bmatrix}$	$ \begin{bmatrix} cs_{12y} & \dots & cs_{1jy} \\ cs_{22y} & \dots & cs_{2jy} \\ \dots & \dots & \dots \\ cs_{i2y} & \dots & cs_{ijy} \end{bmatrix} = \begin{bmatrix} ca_{11y} & ca_{12y} & \dots & ca_{1jy} \\ ca_{21y} & ca_{22y} & \dots & ca_{2jy} \\ \dots & \dots & \dots & \dots \\ ca_{i1y} & ca_{i2y} & \dots & ca_{ijy} \end{bmatrix} \cdot \begin{bmatrix} EF_{11} & EF_{12} & \dots & EF_{1j} \\ EF_{21} & EF_{22} & \dots & EF_{2j} \\ \dots & \dots & \dots \\ EF_{i1} & EF_{i2} & \dots & EF_{ij} \end{bmatrix} $
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
[cs _{i1y}	cs_{i2y} cs_{ijy}] $[ca_{i1y} ca_{i2y} ca_{ijy}] [EF_{i1} EF_{i2} EF_{ij}]$
For example	nple, the cs_{11y} is calculated as bellow:
$cs_{11 y} = c$	$a_{11y} * EF_{11}$
Duciente	d area of land conversion at year y is calculated as the meduat between areas of land
-	d area of land conversion at year <i>y</i> is calculated as the product between areas of land es in the project area at year <i>y</i> and annual transition probability.
-	$= MA_v * MP $ Equation 6
- y	y i transmissione
Where:	
MCA _y	<i>i</i> -by- <i>j</i> matrix in which each element is the projected area of land converted from land use
	category <i>i</i> to <i>j</i> at year y, $ca_{ij y}$; ha
MA_y	<i>i</i> -by- <i>j</i> diagonal matrix whose diagonal elements are areas of land use categories in the
	0

project area at year y, A_{i y}; ha

MP *i*-by-*j* matrix in which each element is the annual transition probability from land use category *i* to *j*, p_{ij}; dimensionless, 0-1

Equation 6 is expressed as below:

[ca _{11y}	ca _{12y}		ca _{1jy}	[A _{1y}	0	 ך 0	[p ₁₁	p_{12}	 p _{1j}
ca _{21y}	ca _{22y}	•••	$\begin{bmatrix} ca_{1jy} \\ ca_{2jy} \end{bmatrix} =$	0	A_{2y}	 0	p ₂₁	p_{22}	 p _{2j}
			-	-		 			
ca _{i1y}	ca _{i2y}	•••	ca _{ijy}] =	[0	0	 A _{iy}]	p _{i1}	$\mathbf{p_{i2}}$	 p _{ij}

For example, selected elements are calculated as bellow:

$$\begin{split} & ca_{11y} = A_{1y} \, * \, p_{11} + 0 \, * \, p_{21} + \ldots + 0 \, * \, p_{i1} \\ & ca_{21y} = 0 * \, p_{11} + A_{2y} \, * \, p_{21} + \ldots + 0 \, * \, p_{i1} \\ & ca_{22y} = 0 \, * \, p_{12} + A_{2y} \, * \, p_{22} + \ldots + 0 \, * \, p_{i2} \\ & ca_{ijy} = 0 \, * \, p_{1j} + 0 \, * \, p_{2j} + \ldots + A_{iy} \, * \, p_{ij} \end{split}$$

Area of each land use category is decreased due to transition to other land categories and increased due to transition from other land use categories. In year y+1, the area of a land use category is the sum of the area staying in the same land use category (e.g., ca_{11y}) plus the area that transitioned to that land category from other land use categories (e.g., ca_{21y} , ca_{31y} , and ca_{i1y}). Area of land use category *j* in year y+1, A_{j y+1}, is calculated as follows:

$$A_{j\,y+1} = \sum_{i} c a_{ij\,y}$$
Equation 7

Where:

 $A_{j y+1}$ Area of land use category j in project area at year y+1; ha $ca_{ij y}$ Area of land converted from land use category i to j in the project area at year y; ha

Please refer to section J for determination of EF_{ij}, A_{i0} and p_{ij}, i.e., MEF, MA₀ and MP.

If the annual transition probability, MP, cannot be obtained, use of the *i*-by-*j* matrix, MP_{multi}, is also allowed, in which each element is the average transition probability from land use category *i* to *j* during <u>multiple-year observation interval</u>. If there are more than one observation interval in the reference period, observation intervals must be the same years. It is 4-years in the FRL submitted to UNFCCC in 2017.

Instead of Equation 6 and Equation 7, the below method is be applied.

MCA _{multi y} =	= MA _y MP _{multi} Equation 8
Where:	
MCA _{multi y}	<i>i</i> -by- <i>j</i> matrix in which each element is the projected area of land converted from land use category <i>i</i> to <i>j</i> during the years of observation period from year <i>y</i> , $ca_{ij multi y}$; ha
MAy	<i>i</i> -by- <i>j</i> diagonal matrix whose diagonal elements are areas of land use categories in project area at year y , A_{iy} ; ha
MP _{multi}	<i>i</i> -by- <i>j</i> matrix in which each element is the transition probability in the multiple-year observation interval from land use category <i>i</i> to <i>j</i> , $p_{multi ij}$; dimensionless, 0-1
For exampl	e, selected elements are calculated as bellow:
$ca_{multi 11y} = A$	$A_{1y} * p_{multi\ 11} + 0 * p_{multi\ 21} + \ldots + 0 * p_{multi\ i1}$
$ca_{multi\ 21y} = 0$	$0* p_{multi 11i} + A_{2y} * p_{multi21} + + 0 * p_{multi 11}$
ca _{multi 22y} =	$0 * p_{multi 12} + A_{2y} * p_{multi 22} + + 0 * p_{multi i2}$
$ca_{multi\ ijy}=0$	* $p_{multi\ 1j}$ + 0 * $p_{multi\ 2j}$ + + A_{iy} * $p_{multi\ ij}$
For number	of years of the observation interval, e.g., year 1 to year 4, if observation interval is 4
years, the sa	ame area of land use category i , A_{iy} , will be used. After that, area of land use category
$j, \mathbf{A}_{\mathrm{j}\mathrm{y+Tmulti}},$	is calculated as follows, and applied from year y+T $_{multi}$, e.g., from year 5:
A _{j y+Tmulti}	$= \sum_{i} c a_{multiijy} $ Equation 9

$$A_{j y+T_{multi}} = \sum_{i} ca_{multi i j y}$$

Where:

$A_{j \; y + T multi}$	Area of land use category j in project area at year $y+T_{multi}$; ha
ca _{multi} ij y	Area of land converted from land use category i to j in the project area during the
	years of observation period from year y; ha
T_{multi}	Number of years in observation interval; count

Please refer section J for determination of and $p_{multi\ ij}$ (MP_{multi}) and T_{multi} .

H. Calculation of project net emissions

Project net emissions at year y during the monitoring period are estimated based on results of

monitoring, and calculated as follows:				
$PE_y = \Delta CS_p$	$PE_{y} = \Delta CS_{pj y} * 44/12 + E_{fuel y} + E_{fertilizer y} + DE_{y} $ Equation 10			
Where:				
PEy	Project net emissions at year y; tCO ₂ -eq			
$\Delta CS_{pj\;y}$	Carbon stock change in the project area at year y; tC			
$E_{fuel \; y}$	CO ₂ emissions from fossil fuel combustion at year y due to the project ac	tivities; tCO ₂		
Efertilizer y	GHG emissions from fertilizer application within the activity area as a par	t of the project		
	activities at year y; tCO ₂ -eq			
DEy	Displaced emissions at year y; tCO ₂			
(1) Ca	arbon stock change in the project area at year y, ΔCS_{pjy}			
The same of	ption applied in the calculation of the project reference level must be used	for the project		
emissions.				
Option 1: Use the FRL transition probabilities from forest to non-forest classes only				
Carbon stock change in the project area at year <i>y</i> is calculated as follows:				
$\Delta CS_{pjy} =$	$\sum_i CA_{pjiy} * EF_i$	Equation 11		
Where:				
$\Delta CS_{pj y}$	Carbon stock change in the project area at year <i>y</i> ; tC			
CA _{pj i y}	Area converted from forest class <i>i</i> to non-forest in the project area at year	y; ha		
EFi	Emission factor applicable for forest class i ; tC ha ⁻¹			
$CA_{pj i y}$ will be determined using Cambodia's official forest maps provided by the government;				

calculated as the yearly average, if the monitoring interval is more than one year.

Accuracy assessment: to fully understand the uncertainty of Cambodia's official forest map in the project area, an accuracy assessment will be performed of the project area and displacement belt using the most recent map and the same points used by the government of Cambodia, with additional points included, if needed. The accuracy assessment of the project area and the displacement belt will determine the error-adjusted area estimates for each class. The accuracy assessment will be performed at the start of the project and each subsequent monitoring period. This process is based on the methods included in Olofsson et al. 2014 and is endorsed by the FAO. See section J for EF_i .

Option 2: Use all the FRL transition probabilities among classes that would result in GHG emissions

To estimate the total emissions, the carbon stock change in the project area at year *y* is calculated as follows:

$$\Delta CS_{pjy} = \sum_{i} \sum_{j} cs_{pjijy} \begin{cases} cs_{pjijy}, & \text{if } cs_{pjijy} > 0\\ 0, & \text{otherwise} \end{cases}$$
 Equation 12

Where:

 $\Delta CS_{pj y} \qquad Carbon stock change in project area at year y; tC \\ cs_{pj ij y} \qquad Carbon stock change in project area from changes of land use category$ *i*to*j* $at year y; tC \\ tC \qquad Carbon stock change in project area from changes of land use category$ *i*to*j* $at year y; tC \\ dt = 0$

The notation $cs_{pj \ ij}$ is an element of *i*-by-*j* cross-tabulation matrix $MCS_{pj \ y}$ which is a product of element-wise multiplication (Hadamard product) of *i*-by-*j* matrices of area changes and emission factors.

$$MCS_{pjy} = MCA_{pjy} \cdot MEF$$
 Equation 13

Where:

MCS _{pj y}	i-by- j matrix in which each element is carbon stock change in the project area from
	changes in land use category <i>i</i> to <i>j</i> at year y, $cs_{pj ij y}$; tC

- MCA_{pj y} *i*-by-*j* matrix in which each element is the area of land converted from land use category i to j in the project area at year y, $ca_{pj i j y}$; ha
- MEF *i*-by-*j* matrix in which each element is emission factor for area of land converted from land use category *i* to *j*, EF_{ij} ; tC ha⁻¹

 $ca_{pj \ ij \ y}$ will be determined using Cambodia's official forest maps provided by the government; calculated as the yearly average, if the monitoring interval is more than one year.

To fully understand the uncertainty of Cambodia's official forest map in the project area, an accuracy assessment will be performed as described above.

See section J for EF_{ij} .

(2) Emissions due to the project activities

Based on the requirements of the methodology guidelines ver01.0, emissions resulting from the implementation of the project activities shall be accounted, including fossil fuel combustion and the application of fertilizer (synthetic fertilizer, organic fertilizer, N-fixing crop, liming material and urea fertilizer). If the GHG emissions, due to use of fuel or the application of fertilizers, are estimated to less than five percent of the total net emissions, quantities of fuel and fertilizers do not need to be monitored, and planned quantities can be used for calculation of GHG emissions.

Emissions from fossil fuel combustion

CO₂ emissions from fossil fuel combustion resulting from the implementation of project activities are calculated as follows¹:

$$E_{fuel y} = \sum_{j} E_{fuel j y}$$
Equation

Where:

 $E_{\text{fuel }y}$ CO₂ emissions from fossil fuel combustion at year y; tCO₂

Efuel j yCO2 emissions from fossil fuel combustion in vehicle/equipment type j at year y; tCO2jtype of vehicle/equipment

For estimation of $E_{\text{fuel y}}$, the following direct method or indirect method can be used, and these can be used interchangeably or simultaneously for different types of vehicle and equipment. E.g., project participant can calculate $E_{\text{fuel y}}$ by applying the direct method for motorbikes and the indirect method for trucks.

Direct method

$$E_{fuel jy} = \sum_{i} (FC_{f jy} * NCV_{f} * EF_{fuel f})$$

Equation 15

14

Where:

E _{fuel j y}	CO_2 emissions from fossil fuel combustion in vehicle/equipment type <i>j</i> at year <i>y</i> ; t CO_2
FCijy	Quantity of fuel type f consumed in vehicle/equipment type j at year y ; mass or volume
$NCV_{\rm f}$	Net calorific value of fuel f ; GJ (mass or volume) ⁻¹
EF _{fuel f}	CO_2 emission factor of the fuel type <i>f</i> combusted; t CO_2 GJ ⁻¹
f	fuel types combusted

See section J for NCF_f and $EF_{fuel f}$.

¹ A/R methodological tool "Estimation of GHG emissions related to fossil fuel combustion in A/R CDM project activities" was referenced.

Indirect me	ethod	
For vehicle		
E _{fueljy} =	$\sum_{f} (NV_{jy} * TD_{jy} * SEC_{jf} * NCV_{f} * EF_{fuelf})$	Equation 16
** *1		
Where:		
E _{fuel j y}	CO_2 emissions from fossil fuel combustion in vehicle type <i>j</i> at year <i>y</i>	; tCO_2
NV _{j y}	Number of vehicle type j at year y; count	
TD _{j y}	Total travel distance for vehicle type <i>j</i> at year <i>y</i> ; km	f anostitu of fuel
SECv _{j f}	Average specific energy consumption of vehicle type j for fuel type km ⁻¹	<i>j</i> ; quantity of fuel
$NCV_{\rm f}$	Net calorific value of fuel <i>f</i> ; GJ (mass or volume) ⁻¹	
EF _{fuel f}	CO_2 emission factor of the fuel type <i>f</i> combusted; t CO_2 GJ ⁻¹	
For equipm		
$E_{fuel jy} =$	$\sum_{f} (NE_{jy} * TU_{jy} * SECe_{ji} * NCV_{f} * EF_{fuelf})$	Equation 17
Where:		
E _{fuel j y}	CO_2 emissions from fossil fuel combustion in equipment type <i>j</i> at year	ar y; t CO_2
NE _{j y}	Number of equipment type <i>j</i> at year <i>y</i> ; count	
TU _{j y}	Total use for equipment type <i>j</i> at year <i>y</i> ; hours	
SECe _{j f}	Average specific energy consumption of equipment type j for fuel hour ⁻¹	f; quantity of fuel
NCV_{f}	Net caloric value of fuel f ; GJ (mass or volume) ⁻¹	
EF _{fuel f}	CO_2 emission factor of the fuel type <i>f</i> combusted; t CO_2 GJ ⁻¹	
For NCF _f ,	$EF_{fuel f}$, $SECv_{j f}$ and $SECe_{j I}$, see section J.	
Emissions	from fertilizer application	
GHG emis	ssions from fertilizer application are calculated as follow:	
$E_{\text{fertilizer y}} =$	Edirect-N y + Eindirect-N y + Eliming y + Eurea y	Equation 18
Where:		
$E_{fertilizer \; y}$	GHG emissions from fertilizer application within the project area an	d the activity area
	for implementation of the project activities at year y ; tCO ₂ -eq	
Edirect-N y	Direct N ₂ O emission as a result of nitrogen application within the pr	roject area and the

	activity area for implementation of the project activities at year y; tCO ₂ -eq
Eindirect-N y	Indirect N_2O emissions as a result of nitrogen application within the project area and the
	activity area for implementation of the project activities at year y; tCO ₂ -eq
Eliming y	CO2 emissions as a result of adding liming materials within the project area and the
	activity area during implementation of the project activities at year y; tCO ₂
Eurea	CO ₂ emissions as a result of urea fertilization application within the project area and the
	activity area during implementation of the project activities at year y; tCO ₂

Direct N_2O emissions as a result of nitrogen application for the implementation of the project activities are calculated as follow²:

$$E_{direct-Ny} = \sum_{c} \left[\left(F_{SN\,c\,y} + F_{ON\,c\,y} + F_{CR\,c\,y} \right) * EF_{direct-N\,c} \right] * 44/28 * GWP_{N20}$$
Equation 19

Edirect-N y	Direct N_2O emissions as a result of nitrogen application within the projection	ct area and the		
	activity area during implementation of the project activities at year y; tCC	D ₂ -eq		
F_{SNcy}	Mass of nitrogen in synthetic fertilizer applied during implementation of the project			
	activities in cropland type c in the activity area at year y ; tN			
Fon c y	Mass of nitrogen in organic fertilizer made from materials sourced from	outside of the		
	project area and the activity area, applied during implementation of the pr	oject activities		
	in cropland type c in the activity area at year y; tN			
F _{CR c y}	Mass of nitrogen in crop residues (above-ground and below-ground) in N	N-fixing crops,		
	introduced during implementation of the project activities in cropland	area c in the		
	activity area and returned to soils, at year y; tN			
EF _{direct-N c}	$_{\rm c}$ $$ Emission factor for N_2O emissions from nitrogen inputs in cropland type c; t N_2O tN			
	input ⁻¹			
44/28	Ratio of molecular weight of N2O and N; dimensionless			
GWP _{N2O}	Global Warming Potential for N2O; tCO2/t N2O			
c	Types of croplands: upland cropland and flooded cropland such as rice pa	ıddy		
See section J for EF _{direct-N c} and GWP _{N20.}				
$F_{SN \ c \ y} = \Sigma$	$F_{SN c y} = \sum_{n} (M_{SF c n y} * NC_{SF n}) $ Equation 20			
$F_{ON c y} = \sum_{n} (M_{OF c n y} * NC_{OF n}) $ Equation 21				

² This is based on A/R Methodology tool "Estimation of direct nitrous oxide emission from nitrogen fertilization" and 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

Where:	
F _{SN c y}	Mass of nitrogen in synthetic fertilizer applied during implementation of the project
	activities in cropland type c at year y, tN
Fon c y	Mass of nitrogen in organic fertilizer made from materials sourced from outside of the
	project area and the activity area and applied during implementation of the project
	activities in cropland type c in the activity area at year y , tN
M_{SNcny}	Mass of synthetic fertilizer type n applied during implementation of the project activities
	in cropland type c in the activity area at year y, t
M_{ONcny}	Mass of organic fertilizer type n made from materials sourced from outside of the project
	area and the activity area and applied during implementation of the project activities in
	cropland type c in the activity area at year y , t
NC _{SN n}	Nitrogen content of synthetic fertilizer type n applied; tN (t fertilizer) ⁻¹
NC _{ON n}	Nitrogen content of organic fertilizer type n applied; tN (t fertilizer) ⁻¹

Data from producers of synthetic fertilizer and published data are used for $NC_{SN n} NC_{ON n}$, respectively. Note that organic fertilizer which is made from organic materials sourced from inside the project area and the activity area are NOT accounted because the emissions from those organic materials occur in the areas regardless the implementation of the project activities.

$$F_{CR\,c\,y} = \sum_{T} \left[CROP_{c\,T\,y} * Area_{c\,T\,y} * Frac_{Renew\,c\,T} * (R_{AG\,T} * N_{AG\,T} + R_{BG\,T} * N_{BG\,T}) \right]$$
Equation 22

FCR c y	Mass of nitrogen in crop residues (above-ground and below-ground) in N-fixing crops,		
	introduced during implementation of the project activities in cropland area c in the		
	activity area and returned to soils, at year y; tN		
Crop _{c T y}	Harvested annual dry matter yield for N-fixing crop T, introduced during		
	implementation of the project activities in cropland area c in the activity area at year y ;		
	t d.m. (ha) ⁻¹		
Area _{c T y}	Total annual area harvested of N-fixing crop T, introduced during implementation of the		
	project activities in cropland area c in the activity area at year y ; ha		
Frac _{Renew T}	Fraction of total area under N-fixing crop T that is renewed annually; dimensionless		
R _{AG T}	Ratio of above-ground residues dry matter to harvested yield for N-fixing crop T; t d.m.		
	(t d.m.) ⁻¹		
N _{AG T}	N content of above-ground residues for N-fixing crop T; t N (t d.m.) ⁻¹		
R _{BG T}	Ratio of below-ground residues to harvest yield for crop <i>T</i> ; t d.m. (t d.m.) ⁻¹		

 N_{BGT} N content of below-ground residues for crop *T*; t N (t d.m.)⁻¹

See Section J for $R_{AG T}$, $N_{AG T}$, $R_{BG T}$ and $N_{BG T}$. Where cropland is renewed on average every X years, $Frac_{renew} = 1/X$. For annual crops $Frac_{renew} = 1$.

Indirect N_2O emissions as a result of nitrogen application during implementation of the project activities are calculated as follow:

$$E_{indirect-N,y} = \left[\left(F_{SN y} * Frac_{SN} + F_{ON y} * Frac_{ON} \right) * EF_{indirect-N} + \left(F_{SN y} + F_{ON y} + F_{CR y} \right) * Frac_{leach} * EF_{leach-N} \right] * \frac{44}{28} * GWP_{N20}$$
Equation 23

Eindirect-N y	Indirect N_2O emissions as a result of nitrogen application within the project area and the	
	activity area for implementation of the project activities at year y; tCO ₂ -eq	
F _{SN y}	Mass of nitrogen in synthetic fertilizer applied during implementation of the project	
	activities at year y; tN	
Fon y	Mass of nitrogen in organic fertilizer made from materials sourced from outside the	
	project area and the activity area and applied during implementation of the project	
	activities in the activity area at year y; tN	
$F_{CR \ c \ y}$	Mass of nitrogen in crop residues (above-ground and below-ground) in N-fixing crops,	
	introduced during implementation of the project activities in cropland area c in the	
	activity area and returned to soils, at year y; tN	
Frac _{SN}	Fraction that volatilized as NH_3 and NO_X for synthetic fertilizers; 0-1	
Fracon	Fraction that volatilized as NH_3 and NO_X for organic fertilizers; 0-1	
EF _{indirect-N}	$F_{indirect-N}$ Emission factor for N ₂ O emissions from atmospheric deposition of N on soils and	
	surfaces; t N ₂ O (t NH ₃ and NO _X volatilized) ⁻¹	
Fracleach	Fraction of N that area lost through leaching and runoff; 0-1	
$EF_{leach-N}$	Emission factor for N_2O emissions from N leaching and runoff; t N_2O (t N leaching and	
	runoff) ⁻¹	
44/28	Ratio of molecular weight of N2O and N; dimensionless	
GWP _{N2O}	Global Warming Potential for N ₂ O; tCO2 (t N ₂ O) $^{-1}$	
See Section	n J for $Frac_{SN}$, $Frac_{ON}$, $Frac_{leach}$, $EF_{indirect-N}$, $EF_{leach-N}$ and GWP_{N2O} .	
$F_{SN y} = \sum$	Equation 24	
$F_{ONy} = \Sigma$	Equation 25	

$F_{ONy} = \sum_{c} F_{ONcy}$	Equation 25
$F_{CR y} = \sum_{c} F_{CR c y}$	Equation 26

Mass of nitrogen in synthetic fertilizer applied during implementation of the project F_{SN y} activities at year y; tN Mass of nitrogen in organic fertilizer made from materials sourced from outside the Fon y project area and the activity area and applied during implementation of the project activities in the activity area at year y; tN Mass of nitrogen in crop residues (above-ground and below-ground) in N-fixing crops, FCR cy introduced during implementation of the project activities in the activity area and returned to soils, at year y; tN Mass of nitrogen in synthetic fertilizer applied during implementation of the project F_{SN c y} activities in cropland type c at year y; tN Fon cy Mass of nitrogen in organic fertilizer made from materials sourced from outside the project area and the activity area and applied during implementation of the project activities in cropland type c in the activity area at year y; tN FCR c y Mass of nitrogen in crop residues (above-ground and below-ground) in N-fixing crops,

introduced during implementation of the project activities in cropland area c in the activity area and returned to soils, at year y; tN

Use $F_{SN cy}$, $F_{ON cy}$ and $F_{CR cy}$ calculated in Equations 20, 21 and 22.

 CO_2 emissions as a result of adding liming materials during implementation of the project activities are calculated as follow:

$$E_{liming y} = \left(M_{limestone y} * EF_{limestone} + M_{dolomite y} * EF_{dolomite} \right) * \frac{44}{12}$$
 Equation 27

Where:

Eliming y	CO_2 emissions as a result of adding liming materials within the project area and the
	activity area during implementation of the project activities at year y; tCO ₂
Mlimestone	Mass of calcic limestone (CaCO ₃) applied during implementation of the project activities
	in the activity area at year y; t
EFlimestone	Emission factor for limestone; t C (t limestone) ⁻¹
M _{dolomite}	Mass of dolomite (CaMg(CO ₃) ₂) applied during implementation of the project activities
	in the activity area at year y; t
EF _{dolomite}	Emission factor for dolomite; t C (t dolomite) ⁻¹
44/12	Ratio of molecular weight of CO2 and C; dimensionless

See Section J for EFlimestone and EFdolomite.

CO₂ emissions as a result of urea fertilization application during implementation of the project activities are calculated as follow:

$$E_{urea y} = M_{urea y} * EF_{urea} * \frac{44}{12}$$
 Equation 28

Where:

Eurea y	CO ₂ emissions as a result of application of urea within the project area and the activity	
	area during implementation of the project activities at year y; tCO ₂	
M _{urea y}	Mass of urea fertilizer applied during implementation of the project activities in the	
	activity area at year y; t	
EFurea	Emission factor for urea; t C/t urea	
44/12	Ratio of molecular weight of CO ₂ and C; dimensionless	

See Section J for EF_{urea} .

(3) Displaced emissions

In this methodology, displacement is assessed through monitoring of the displacement belt. The displacement belt captures the displacement of baseline activities due to the project activities, or interventions, in the project area.

Although a detailed analysis of the local drivers of deforestation and degradation is not anticipated, the local context will be captured through local expert input. Displaced emissions is calculated as increases of emissions compared to reference level emissions within the displacement belt.

Displaced emissions are calculated as follows:

$$DE_{y} = \begin{cases} DP_{y} - DR_{y}, \text{ if } DP_{y} - DR_{y} > 0\\ 0, \text{ otherwise} \end{cases}$$
 Equation 29

Where:

DE_y	Displaced emissions to the displacement belt at year y ; tCO ₂

DR_y	Reference level	l emissions in the	displacement be	It at year y ; tCO ₂

DP_y Project emissions in the displacement belt at year y; tCO₂

 DR_y and DP_y are calculated as follows: $DR_y = \Delta CS_{dy} * 44/12$ Equation 30 Where:

DR_y	Reference level emissions in the displacement belt at year y ; tCO ₂
ΔCS_{dy}	Projected carbon stock change in the displacement belt at year <i>y</i> ; tC
44/12	Conversion factor of molecular weight of carbon to CO ₂

$$DP_y = \Delta CS_{d pj y} * 44/12$$
 Equation 31

Where:

\mathbf{DP}_{y}	Project emissions in the displacement belt at year y; tCO ₂
ΔCS_{dpjy}	Actual carbon stock change in the displacement belt at year y; tC
44/12	Conversion factor of molecular weight of carbon to CO ₂

Projected and actual carbon stock changes in the displacement belt area, i.e., ΔCS_{dy} and ΔCS_{dpjy} , are calculated by applying the option used in Section G.2 Calculation of project reference level.

Option 1: Use the FRL transition probabilities from forest to non-forest classes only Projected carbon stock change in the displacement belt at year y is calculated as follows: $\Delta CS_{dy} = \sum_{i} A_{diy} * P_{di} * EF_{i}$ Equation 32

Where:

ΔCS_{dy}	Projected carbon stock change in the displacement belt at year y; tC
A_{diy}	Area of forest class <i>i</i> in the displacement belt at year <i>y</i> ; ha
P _{d i}	Annual transition probability from forest class i to non-forest within the displacement
	belt; 0-1
EFi	Emission factor applicable for forest class i ; tC ha ⁻¹

Area of forest class i is assumed to decrease every year due to deforestation, and therefore calculated as follows:

$A_{d i y+1} = A_{d i y} * (1 - P_{d i})$	Equation 33
---	-------------

Where:

Adiy Area of forest category *i* in displacement belt at year *y*; ha

P_{d i} Annual transition probability from forest class *i* to non-forest within the displacement belt; 0-1

Please refer section J for $A_{d 0 y}$ and $P_{d i}$.

Actual carbon stock change in the displacement belt at year y is calculated as follows: $\Delta CS_{d p j y} = \Sigma CA_{d p j i y} * EF_i$ Equation 34

Where:

ΔCS_{dpjy}	Carbon stock change in the displacement belt at year y; tC
CA_{dpjiy}	Area converted from forest class i to non-forest in the displacement belt at year y ; ha
EFi	Emission factor applicable for land use category <i>i</i> ; tC ha ⁻¹

 $CA_{d pj i y}$ will be determined using Cambodia's official forest maps provided by the government; calculated as yearly average, if the monitoring interval is more than one year.

To fully understand the uncertainty of Cambodia's official forest map in the project area, an accuracy assessment will be performed as described in Section H calculation of project net emission, sub-section (1) carbon stock change in the project area.

See section J for EF_i.

Option 2: Use all transition probabilities resulting in emissions in the FRL

Projected carbon stock change in the displacement belt at year *y* is calculated as follows:

To estimate the total emissions, the projected carbon stock change at year y in the displacement belt is calculated as follows:

$$\Delta CS_{dy} = \sum_{i} \sum_{j} cs_{dijy} \begin{cases} cs_{dijy}, & \text{if } cs_{dijy} > 0\\ 0, & \text{otherwise} \end{cases}$$
 Equation 35

Where:

 ΔCS_{dy} Projected carbon stock change in the displacement belt at year y; tC

 $c_{sd ij y}$ Projected carbon stock change in the displacement belt from changes of land use category *i* to *j* at year *y*; tC

The notation $cs_{d\,ij}$ is an element of *i*-by-*j* cross-tabulation matrix MCS_{dy} which is a product of elementwise multiplication (Hadamard product) of *i*-by-*j* matrices of area changes and emission factors. MCS_{dy} = MCA_{dy} · MEF Equation 36

MCS _{d y}	<i>i</i> -by- <i>j</i> matrix in which each element is projected carbon stock change in the displacement
	belt from changes of land use category <i>i</i> to <i>j</i> at year y, $cs_{d ij y}$; tC
MCA _{d y}	<i>i</i> -by- <i>j</i> matrix in which each element is projected area of land converted from land use
	category <i>i</i> to <i>j</i> in the displacement belt at year <i>y</i> , $ca_{d ij y}$; ha
MEF	<i>i</i> -by- <i>j</i> matrix in which each element is the emission factor for area of land converted
	from land use category <i>i</i> to <i>j</i> , EF_{ij} ; tC ha ⁻¹

Projected area of land conversion at year *y* is calculated as the product between areas of land categories in the displacement belt at year *y* and annual transition probability.

$$MCA_{dv} = MA_{dv}MP_{d}$$

Equation 37

Where:

MCA _{d y}	<i>i</i> -by- <i>j</i> matrix in which each element is the projected area of land converted from land use
	category <i>i</i> to <i>j</i> in the displacement belt at year y, $ca_{d ij y}$; ha

MA_{dy} *i*-by-*j* diagonal matrix whose diagonal elements are areas of land use categories in the displacement belt at year y, A_{diy}; ha

 MP_d *i*-by-*j* matrix in which each element is the annual transition probability from land use category *i* to *j* in the displacement belt, $p_{d ij}$; dimensionless, 0-1

Similar to Equation 7, area of land use category *j* at year y+1, $A_{d j y+1}$, is calculated as follows: $A_{d j y+1} = \sum_{i} c a_{d i j y}$ Equation 38

Where:

 $A_{d j y+1}$ Area of land use category j in the displacement belt at year y+1; ha $ca_{d i j y}$ Area of land converted from land use category i to j the displacement belt at year y; ha

Please refer section J for determination of EF_{ij} , $A_{d\,i\,0}$ and $p_{d\,ij}$, i.e., MEF, $MA_{d\,0}$ and MP_d .

If the annual transition probability, MP_d , cannot be obtained, use of the *i*-by-*j* matrix, $MP_{multi d}$, is allowed in which each element is average transition probability from land use category *i* to *j* during a multiple-year observation interval. If there are more than one observation interval in the reference period, observation intervals must be the same years. It is 4-year in FRL submitted to UNFCCC in 2017.

Instead of Equation 37 and Equation 38, the below method is be applied.

 $MCA_{d multiy} = MA_{d y}MP_{multid}$

Equation 39

Where:

- MCA_{d multi y} *i*-by-*j* matrix in which each element is projected area of land converted from land use category *i* to *j* in the displacement belt from changes of land use category *i* to *j* during the years of observation period from year y, $cs_{d multi ij}$; tC
- MA_{dy} *i*-by-*j* diagonal matrix whose diagonal elements are areas of land use categories in the displacement belt at year y, A_{diy}; ha

 $MP_{multi d}$ *i*-by-*j* matrix in which each element is the transition probability in a multiple-year observation interval from land use category *i* to *j* in the displacement belt, $p_{multi d ij}$; dimensionless, 0-1

For the number of years of the observation interval, e.g., year 1 to year 4, if observation interval is 4 years, the same area of land use category *i*, $A_{d i y}$, will be used. Area of land use category *j* at year 1+T_{multi}, $A_{d j y+Tmulti}$, is calculated as follows, and applied from year 1+T_{multi}.

$$A_{d\,i\,y+T_{multi}} = \sum_{i} c a_{d\,ij\,y}$$
Equation 40

Where:

$A_{i\;y+Tmulti}$	Area of land use category i in the displacement belt at year y+T _{multi} ; ha
cad multi ij y	Area of land converted from land use category i to j the displacement belt during the
	years of observation period from year y; ha
T _{multi}	Number of years in observation interval; count

Please refer section J for determination of and $p_{multi \ d \ ij}$ (MP_{multi \ d}) and T_{multi}.

Actual carbon stock change in the displacement belt at year *y* is calculated as follows:

To estimate the total emissions, the carbon stock change in the displacement belt at year y is calculated as follows:

$$\Delta CS_{d p j y} = \sum_{i} \sum_{j} cs_{d p j i j y} \begin{cases} cs_{d p j i j y}, & \text{if } cs_{d p j i j y} > 0 \\ 0, & \text{otherwise} \end{cases}$$
 Equation 41

ΔCS_{dpjy}	Carbon stock change in the displacement belt at year y; tC
cs _{d pj ij y}	Carbon stock change in the displacement belt from changes of land use category i to j at
	year y; tC

The notation $cs_{d pj ij}$ is an element of the *i*-by-*j* cross-tabulation matrix MCS_{d pj y} which is a product of element-wise multiplication (Hadamard product) of *i*-by-*j* matrices of area changes and emission factors.

 $MCS_{d p j y} = MCA_{d p j y} \cdot MEF$

Equation 42

Where:

- $MCS_{d pj y}$ *i*-by-*j* matrix in which each element is carbon stock change in the displacement belt from changes of land use category *i* to *j* at year y, $cs_{d pj ij y}$; tC
- MCA_{d pj y} *i*-by-*j* matrix in which each element is area of land converted from land use category *i* to j in the displacement belt at year y, ca_{d pj ij} y; ha
- MEF *i*-by-*j* matrix in which each element is emission factor for area of land converted from land use category *i* to *j*, EF_{ij} ; tC ha⁻¹

 $ca_{d pj ij y}$ will be determined by using Cambodia's official forest maps provided by the government, will be calculated as yearly average, if the monitoring interval is more than one year.

To fully understand the uncertainty of Cambodia's official forest map in the project area, an accuracy assessment will be performed as described in Section H calculation of project net emission, sub-section (1) carbon stock change in the project area.

See section J for EF_{ij}.

I. Calculation of project emission reductions to be credited

Project emission reductions at year y are calculated as the difference between the project reference level and the project net emissions.

 $ER_y = RL_y - PE_y$

Where:

ER_y Project emissions reductions at year y; tCO₂-eq

RL_y Project reference level at year *y*; tCO₂

PE_y Project net emissions at year *y*; tCO₂-eq

 $ER_{credt y} = ER_y * (1-DF)$

Equation 44

Equation 43

Where:

ER _{credit y} ,	Project emissions reductions available to be credited at year y; tCO ₂ -eq
$\mathbf{ER}_{\mathbf{y}}$	Project emissions reductions at year y; tCO ₂ -eq
DF	Discount factor, default as 0.2

A discount factor is applied as a measure for risk of reversals.

Project emissions reductions available to be credited for a monitoring period are calculated as follows:

$$ER_{credit p} = \sum_{i} ER_{credit y}$$

Equation 45

Where:

ER_{credit p} Project emissions reductions available to be credited for a monitoring period p; tCO₂-eq

ER_{credit y,} Project emissions reductions available to be credited at year y; tCO₂-eq

J. Data and parameters fixed *ex ante*

The lists of the source of each data and parameter fixed *ex ante* and the source of each of default values selected in this methodology are available at the end of this section. The same option applied in the Calculation of project reference level must be used.

(1) Emission factors for land conversions

Emission factors are calculated by applying carbon stock data used in FRL, or other official report by Cambodian government.

Table 1 shows carbon stock data used in the FRL submitted in 2017. As new official data becomes available, emission factors can be updated in coordination with government of Cambodia.

Table 1 Above ground and below ground biomass data used in the FKL submitted in 2017									
Forest/Non-	Land category	Abbreviation	Above-	Below-	Total biomass, tCha-1				
Forest			ground, ground,						
			tCha ⁻¹	tCha ⁻¹					
Forest	Evergreen forest	Е	76.61	14.69	91.30				
	Semi-evergreen	SE	114.21	20.9	135.11				
	forest								
	Pine forest	Р	47	9.54	56.54				

Table 1 Above ground and below ground biomass data used in the FRL submitted in 2017

	Deciduous forest	D	39.95	8.26	48.21
	Bamboo	В	0	0	0
	Mangrove	М	70.5	13.65	84.15
	Rear Mangrove	MR	77.55	14.85	92.40
	Flooded forest	FF	32.9	6.96	39.86
	Forest regrowth	FR	35.25	7.4	42.65
	Tree plantation	ТР	47	9.54	56.54
	Pine plantation	PP	47	9.54	56.54
Non-forest	Non-forest	NF	0	0	0

Although Cambodia defined tree plantation (TP) and pine plantation (PP) as forest, emissions and removals in areas converted from the other forest categories to these two categories were excluded from the FRL submitted in 2017 in consideration of safeguards, while those in areas converted from TP and PP to the other land use categories are included. The project participant uses the latest FRL, and apply zero as EF for the conversion categories which are excluded from calculation in the FRL.

Option 1: Use the FRL transition probabilities from forest to non-forest classes only

 EF_i is an emission factor for area of land converted from land use category *i*, which is forest, to non-forest.

$$EF_i = \sum_k C_{ik}$$
 Equation 46

Where:

EF_i	Emission factor applicable for forest class i ; tC ha ⁻¹
C_{ik}	Carbon stock in carbon pool k in forest class i per unit area; tCha ⁻¹
k	Carbon pools included in establishment of FRL; dimensionless

Above ground and below ground are the carbon pools included in the establishment of the FRL submitted in 2017. Table 2 shows the calculated EF_i based on the FRL submitted in 2017.

	1	
Land category, <i>i</i>	Abbreviation	EF _i , tCha ⁻¹
Evergreen forest	Е	91.30
Semi-evergreen forest	SE	135.11
Pine forest	Р	56.54

Table 2 Emission factors, EF_i, for Option 1 based on the FRL submitted in 2017

Deciduous forest	D	48.21
Bamboo	В	0
Mangrove	М	84.15
Rear Mangrove	MR	92.40
Flooded forest	FF	39.86
Forest regrowth	FR	42.65
Tree plantation	ТР	56.54
Pine plantation	PP	56.54
Non-forest	NF	0

Option 2: Use all the FRL transition probabilities among classes that would result in emissions

 EF_{ij} is an emission factor for area of land converted from land use category *i* to *j*.

$$EF_{ij} = \sum_{k} C_{ik} - \sum_{k} C_{jk}$$
Equation 47

Where:

$\mathrm{EF}_{\mathrm{ij}}$	Emission factor applicable for land converted from land use category i to j ; tC ha ⁻¹
C_{ik}	Carbon stock in carbon pool k in land use category i per unit area; tCha ⁻¹
k	Carbon pools included in establishment of FRL; dimensionless

Table 3 Emission factors, EF_{ij}, for Option 2 based on the FRL submitted in 2017

		j											
		Е	Se	Р	D	В	М	Mr	Ff	Fr	Тр	Рр	NF
i	Е	0.00	NA	34.76	43.09	91.30	7.15	NA	51.44	48.65	NA	NA	91.30
	Se	43.81	0.00	78.57	86.90	135.11	50.96	42.71	95.25	92.46	NA	NA	135.11
	Р	NA	NA	0.00	8.33	56.54	NA	NA	16.68	13.89	NA	NA	56.54
	D	NA	NA	NA	0.00	48.21	NA	NA	8.35	5.56	NA	NA	48.21
	В	NA	NA	NA	NA	0.00	NA	NA	NA	NA	NA	NA	0.00
	Μ	NA	NA	27.61	35.94	84.15	0.00	NA	44.29	41.50	NA	NA	84.15
	Mr	1.10	NA	35.86	44.19	92.40	8.25	0.00	52.54	49.75	NA	NA	92.40
	Ff	NA	NA	NA	NA	39.86	NA	NA	0.00	NA	NA	NA	39.86
	Fr	NA	NA	NA	NA	42.65	NA	NA	2.79	0.00	NA	NA	42.65
	Тр	NA	NA	0.00	8.33	56.54	NA	NA	16.68	13.89	0.00	0.00	56.54
	Рр	NA	NA	0.00	8.33	56.54	NA	NA	16.68	13.89	0.00	0.00	56.54
	NF	NA	NA	NA	NA	0.00	NA	NA	NA	NA	NA	NA	0.00

Note that when a land use category with a higher carbon stock is converted to a lower carbon stock, e.g., conversion from evergreen forest to non-forest, the EF_{ij} is positive. Removals are not included in this methodology, and therefore emission factors for conversions from a land use category with lower carbon stock to higher carbon stock are not available in Table 3. As previously described, emissions and removals in areas converted from the other forest categories to tree plantation (Tp) or pine plantation (Pp) were excluded in the establishment of the FRL submitted

in 2017, and therefore EFs of those transitions as well as transitions resulting in removals are also not available in Table 3.

(2) Area of land use category i

This method applies to both options, Option 1 and 2, and to the following parameters:

 A_{i0} Area of forest class *i* or land use category *i* in the project area at the project start; ha

 A_{di0} Area of forest class *i* or land use category *i* in the displacement belt at the project start; ha

The most recent version of Cambodia's official forest map (≤ 2 years) provided by Cambodian government used to determine the area of land use category *i* in the project area and in the displacement belt at the project start date. Once A_{i0} and A_{di0} are determined in the project design document, these areas, determined at the project start date, will not be updated.

To fully understand the uncertainty of Cambodia's official forest map in the project area, an accuracy assessment will be performed as described in Section H calculation of project net emission, sub-section (1) carbon stock change in the project area.

(3) Annual transition probability in the reference area

Option 1: Use the FRL transition probabilities from forest to non-forest classes only

Annual deforestation rate for each forest type existing inside the project area, P_i , is calculated by applying area, $A_{ref i}$, and area change, $CA_{ref i}$, reported in the FRL, and is used in Equation 2. Table 4 shows P_i calculated based on the FRL submitted in 2017.

$$P_i = CA_{ref i} / (A_{ref i} * T_{ref})$$

Equation 48

$\mathbf{P}_{\mathbf{i}}$	Annual deforestation rate applicable to forest type <i>i</i> in the reference area; dimensionless
CA_{refi}	Area converted into non-forest from land use category <i>i</i> during the reference period, e.g.,
	2006-2014 in the FRL submitted in 2017, in reference area; ha
Aref i	Area of land use category i in the reference area at the first year, e.g., 2006 in the FRL
	submitted in 2017, of the reference period; ha
T _{ref}	Number of years, e.g., eight in the FRL submitted in 2017, in the reference period; count

Table 4 P_i calculated based on the data used in the FRL submitted in 2017

Forest/Non-Forest	Land category	Abbreviation	Pi
-------------------	---------------	--------------	----

Forest	Evergreen forest	Е	0.0249
	Semi-evergreen forest	SE	0.0309
	Pine forest	Р	0.0000
	Deciduous forest	D	0.0345
	Bamboo	В	0.0141
	Mangrove	М	0.0100
	Rear Mangrove	MR	0.0417
	Flooded forest	FF	0.0506
	Forest regrowth	FR	0.0972
	Tree plantation	ТР	0.1169
	Pine plantation	PP	0.000

Option 2: Use all the FRL transition probabilities among classes that would result in GHG emissions

Annual transition probability from land use category *i* to *j* is obtained in the form of a transition probability matrix, MP, using the forest area change matrix reported in FRL. It is important to note that the annual transition probability cannot be obtained by simply dividing transition probability in multiple years by number of the years, because transition probability in multiple years, *c* years, is *c*-th power of annual transition probability. It is recommended to use a method provided in a peer reviewed scientific paper for calculation of the annual transition probability, such as Takada et al. 2010^3 . Calculated MP is used in Equation 6.

Obtain an area-based *i*-by-*j* transition matrix for each of time interval from the FRL. In the FRL submitted in 2017, Forest Area Change Matrices between 2006 and 2010 and between 2010 and 2014 area are available in Annex I Emission/Removal Calculation Tables. Annual transition probabilities derived using the matrices in the FRL submitted in 2017 are available in Table 6 below.

Transition probability in an observation interval t is calculated as follows: $prob_{ijt} = CA_{refijt}/A_{refit}$

Equation 49

Where:

prob_{ij t} Transition probability of land converted from land category i to j during an observation time interval t; dimensionless 0-1

³ Takada T, Miyamoto A and Hasegawa SF (2010) Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landscape Ecol 25:561-572

CA_{ref ij t} Area converted from land category *i* to *j* during an observation time interval *t* within the reference area; ha
 A_{ref i t} Area of land category *i* at the first year of an observation time interval *t* within reference

The notion prob_{ijt} is an element of i-by-j cross-tabulation matrix $\text{MP}_{\text{multi}t}$, and $\text{MP}_{\text{multi}t}$ is the $T_{\text{multi}t}$ th power of annual transition matrix MP_{t} .

$$MP_{multi\ t} = MP_t^{T_{multi}}$$
Equation 50

Where:

area; ha

$MP_{multi\ t}$	<i>i</i> -by- <i>j</i> matrix in which each element is the transition probability from land use category
	<i>i</i> to <i>j</i> during an observation time interval <i>t</i> , prob_{ij} t; dimensionless, 0-1
MP_t	<i>i</i> -by- <i>j</i> matrix in which each element is the annual transition probability from land use
	category <i>i</i> to <i>j</i> during an observation time interval <i>t</i> , p_{ij} ; dimensionless, 0-1
T _{multi}	number of years of observation interval; count

Table 5 shows the transition probability matrix, $MP_{multi 2006-2010}$, in which each element prob_{ij 2006-2010} is the transition probability from *i* to *j* in 4 years between 2006 and 2010 in the cross-tabulation based on the FRL submitted in 2017. Note that the diagonal elements represent the probabilities of land being in the same category.

Table 5 Cross-tabulation matrix of 4-year, 2006-2010, transition probability based on the FRL submitted in 2017

	2010												
2006		Е	Se	Р	D	В	М	Mr	Ff	Fr	Тр	Рр	NF
	Е	0.960	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.039
	Se	0.000	0.952	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.045
	Р	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	D	0.000	0.000	0.000	0.971	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.029
	В	0.000	0.000	0.000	0.000	0.992	0.000	0.000	0.000	0.000	0.000	0.000	0.008
	Μ	0.004	0.002	0.000	0.000	0.000	0.968	0.001	0.000	0.000	0.000	0.000	0.025
	Mr	0.000	0.003	0.000	0.000	0.000	0.003	0.962	0.000	0.002	0.000	0.000	0.030
	Ff	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.790	0.001	0.000	0.000	0.209
	Fr	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.881	0.001	0.000	0.116
	Тр	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.004	0.184	0.000	0.811
	Рр												
	NF	0.002	0.001	0.000	0.003	0.000	0.000	0.000	0.007	0.007	0.001	0.000	0.979

Obtain the annual transition probability matrix, MP_t , in which each element $p_{ij t}$ is the annual transition probability during an observation time interval *t*, by using $MP_{multi t}$ and a method provided in a peer reviewed scientific paper for calculation of annual transition probability such

as Takada et al. 2010. The obtained MPt should be validated by applying Equation 46.

Calculate average annual transition probability as follows:

$$p_{ij} = \frac{\sum_{t} p_{ij\,t}}{N_{int}}$$
Equation 51

Where:

p_{ij}	Average annual transition probability of land converted from land category i to j; 0-1
p _{ij t}	Annual transition probability of land converted from land category i to j during an
	observation time interval t; 0-1
N _{int}	Number of observation intervals reported in FRL; count

Table 6 shows the annual transition probability matrix, MP, in which each element p_{ij} is annual transition probability from *i* to *j* based on observations during intervals of 2006-2010 and 2010-2014 presented in the FRL submitted in 2017.

Table 6 Annual transition probability matrix based on observations during intervals of 2006-2010 and 2010-2014 presented in the FRL submitted in 2017

	y+1												
у		Е	Se	Р	D	В	М	Mr	Ff	Fr	Тр	Рр	NF
	Е	0.971	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.027
	Se	0.000	0.963	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.035
	Р	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	D	0.000	0.000	0.000	0.960	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.040
	В	0.000	0.000	0.000	0.000	0.985	0.000	0.000	0.000	0.001	0.000	0.000	0.015
	М	0.001	0.000	0.000	0.000	0.000	0.988	0.001	0.000	0.000	0.000	0.000	0.010
	Mr	0.000	0.000	0.000	0.000	0.000	0.003	0.944	0.000	0.005	0.001	0.000	0.048
	Ff	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.940	0.001	0.000	0.000	0.060
	Fr	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.875	0.002	0.000	0.117
	Тр	0.000	0.000	0.000	-	0.000	0.000	0.000	-	0.003	0.780	0.000	0.219
					0.001				0.001				
	Рр	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000
	NF	0.001	0.001	0.000	0.003	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.990

(4) Annual transition probability in the displacement belt

The same method as (3), Annual transition probability in the reference area, is applied for the displacement belt instead of the reference area.

(5) Parameters for calculating emissions due to the project activities

Fossil fuel combustion

Default net caloric value and net calorific based emission factors are available in the 2006 IPCC Guidelines, and those of selected fuels types are listed in the table for "the source of each data

and parameter fixed ex ante".

Reference figures such as manufacturer specifications can be used for $SECv_{j\,f}$ and $SECe_{j\,i}$. If no specific energy consumption data are available, fuel consumption and distance and/or hours are recorded before the initial verification to calculate $SECv_{j\,f}$ and $SECe_{j\,i}$. Those figures can be used for the entire project period.

Fertilizer application

Data and parameter fixed *ex ante* and default values for calculating N_2O and CO_2 emissions are shown in the tables for "the source of each data and parameter fixed *ex ante*" and "the source of each of default values selected in this methodology" below.

Parameter	Description of data	Source
A_{i0}	Area of forest class i in the project area at the initial	Cambodia's official forest
	year; ha	map
\mathbf{P}_{i}	Option (1) Annual transition probability from forest	Cambodia's official forest
	class i to non-forest within the reference area;	reference level (FRL)
	dimensionless	
p_{ij}	Option (2) Annual transition probability from land use	Cambodia's official forest
	category i to j within the reference area; dimensionless	reference level (FRL)
EF_{i}	Option (1) Emission factor applicable for forest class	Cambodia's official forest
	i; tC ha ⁻¹	reference level (FRL)
$\mathrm{EF}_{\mathrm{ij}}$	Option (2) Emission factor for area of land converted	Cambodia's official forest
	from land use category i to j; tC ha ⁻¹ ; tC ha ⁻¹	reference level (FRL)
A_{di0}	Area of forest class i in the displacement belt at the	Cambodia's official forest
	initial year; ha	map
P_{di}	Option (1) Annual transition probability from forest	Cambodia's official forest
	class i to non-forest within the displacement belt;	reference level (FRL)
	dimensionless	
pd ij	Option (2) Annual transition probability from land use	Cambodia's official forest
	category i to j within the displacement belt;	reference level (FRL)
	dimensionless	
NC _{SN n}	Nitrogen content of synthetic fertilizer type n applied;	Data from producers of
	tN (t fertilizer) ⁻¹	synthetic fertilize
NC _{ON n}	Nitrogen content of organic fertilizer type n applied;	Published data

The source of each data and parameter fixed *ex ante* is listed as below.

	tN (t fertilizer) ⁻¹	
	Net calorific value of fuel f; GJ (mass or volume) ⁻¹	
NCV _f	- Gas/Diesel oil: 43.0 TJ Gg ⁻¹ (*)	Table 1.2 of Ch. 1 Vol. 2
INC V f	– Motor Gasoline: 44.3 TJ Gg ⁻¹	of 2006 IPCC Guidelines
	- Crude Oil: 42.3 TJ Gg ⁻¹	
EF _{fuel f}	CO ₂ emission factor of the fuel type f combusted; t CO ₂ GJ ⁻¹ - Gas/Diesel Oil: 74,100 kg CO ₂ TJ ⁻¹ (**)	Table 3.2.1 of Ch. 3 and Table 2.5 of Ch.2, Vol. 2 of
	- Motor Gasoline: $69,300 \text{ kg CO}_2 \text{ TJ}^{-1}$	2006 IPCC Guidelines
	 Crude Oil: 73,300 kg TJ⁻¹ 	Tables 2.5 and 3.2.1
N _{AG T}	N content of above-ground residues for N-fixing crop <i>T</i> ; dimensionless – Bean: 0.008 For other crops, see Table 11.2 of 2006 IPCC Guidelines	Table 11.2 of Ch. 11 Vol. 4 of 2006 IPCC Guidelines
N _{BG T}	N content of below-ground residues for crop <i>T</i> ; dimensionless - Bean: 0.008 For other crops, see Table 11.2 of 2006 IPCC Guidelines	Table 11.2 of Ch. 11 Vol. 4 of 2006 IPCC Guidelines
Frac _{Renew T}	Fraction of total area under N-fixing crop T that is renewed annually; dimensionless	Where cropland is renewed on average every X years, Fracrenew = 1/X. For annual crops Fracrenew = 1

The source of each of default values selected in this methodology is listed as below.

Parameter	Description of data	Source
EF _{direct-N c}	Emission factor for N ₂ O emissions from N inputs in cropland type c; tN ₂ O (tN-input) ⁻¹ - Cropland in general: 0.01 tN ₂ O (tN-input) ⁻¹ - Rice paddy (flooded rice field): 0.003 tN ₂ O (tN-input) ⁻¹	Table 11.1 of Ch. 11 Vol. 4 of 2006 IPCC Guidelines
EF _{indirect-N}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Table 11.3 of Ch. 11 Vol. 4 of 2006 IPCC Guidelines

	Emission factor for N ₂ O emissions from N leaching and	Table 11.3 of Ch.
EF _{leach-N}	runoff; t N ₂ O (t leaching and runoff) ⁻¹	11 Vol. 4 of 2006
	- 0.0075 t N ₂ O (t N leaching and runoff) ⁻¹	IPCC Guidelines
EF _{limestone}	Emission factor for limestone; t C (t limestone) ⁻¹	Section 11.3.1 of
	- 0.12 t C (t limestone) ⁻¹	Ch. 11 Vol. 4 of
		2006 IPCC
		Guidelines
EF _{dolomite}	Emission factor for dolomite; t C (t dolomite) ⁻¹	Section 11.3.1 of
	- 0.13 t C (dolomite) ⁻¹	Ch. 11 Vol. 4 of
		2006 IPCC
		Guidelines
EF _{urea}	Emission factor for urea; t C (t urea) ⁻¹	Section 11.4.1 of
	- 0.20 t C (t urea) ⁻¹	Ch. 11 Vol. 4 of
		2006 IPCC
		Guidelines
GWP _{N2O}	Global Warming Potential for N ₂ O; tCO ₂ (tN ₂ O) ⁻¹	Table 8.A.1 in
	$- \qquad GWP_{100} \text{ for } N_2O: 265 \text{ tCO}_2 \text{ (tN}_2O)^{-1}$	Ch.8 of Working
		Group I
		contribution to the
		IPCC Fifth
		Assessment
		Report
Frac _{sn}	Fraction that volatilized as NH_3 and NO_X for synthetic	Table 11.3 of Ch.
	fertilizers	11 Vol. 4 of 2006
	- 0.10	IPCC Guidelines
Frac _{ON}	Fraction that volatilized as NH_3 and NO_X for organic fertilizers	Table 11.3 of Ch.
	- 0.20	11 Vol. 4 of 2006
		IPCC Guidelines
Fracleach	Fraction of N that area lost through leaching and runoff	Table 11.3 of Ch.
	- 0.30	11 Vol. 4 of 2006
		IPCC Guidelines