JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Cambodia		
Name of the methodology proponents	AEON MALL Co., Ltd.		
submitting this form			
Sectoral scope(s) to which the Proposed	3.Energy demand		
Methodology applies			
Title of the proposed methodology, and	Introduction of High Efficiency Centrifugal		
version number	Chiller, Ver01.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	14/11/2018		

History of the proposed methodology

Version	Date	Contents revised
1.0	14/11/2018	First edition

A. Title of the methodology

Introduction of High Efficiency Centrifugal Chiller, Ver01.0

B. Terms and definitions

Terms	Definitions			
Centrifugal chiller	A centrifugal chiller is a chiller applying a centrifugal			
	compressor. It is commonly used for air-conditioning with huge			
	cooling load, e.g., buildings, shopping malls or factories etc.			
Cooling capacity	Cooling capacity is the ability of individual chiller to remove			
	heat. In this methodology, "cooling capacity" is used to represent			
	a cooling capacity per one chiller unit and not for a system with			
	multiple chiller units.			
Periodical check	Periodical check is a periodical investigation of chiller done by			
	manufacturer or agent who is authorized by the manufacturer, in			
	order to maintain chiller performance.			

C. Summary of the methodology

Items	Summary		
GHG emission reduction	High efficiency centrifugal chiller is introduced to save energy,		
measures	which leads to GHG emission reductions.		
Calculation of reference	Reference emissions are GHG emissions from using reference		
emissions	chiller, calculated with power consumption of project chiller,		
	ratio of COPs (Coefficient Of Performance) of reference/project		
	chillers and CO ₂ emission factor for electricity consumed.		
Calculation of project	Project emissions are GHG emissions from using project chiller,		
emissions	calculated with power consumption of project chiller and CO ₂		
	emission factor for electricity consumed.		
Monitoring parameters	Power consumption of project chiller		
	• Amount of fuel consumed and amount of electricity		
	generated by captive power, where applicable.		

D. Eligibility criteria						
This methodology is applicable to projects that satisfy all of the following criteria.						
Criterion 1	Project chiller is a centrifugal chiller with a capacity of less than or equal to				than or equal to	
	1,300 USRt.					
	* 1 USRt = 3.52 l	κW				
Criterion 2	COP for project	t chil	ler <i>i</i> calcula	ted under th	ne standardizi	ing temperature
	conditions* (COI	P _{PJ,tc,i})	is more than	the threshold	COP values	set in the tables
	below. ("x" in the	table	represents co	oling capacity	per unit.)	
	[Threshold COP	values	for project ch	iller]	1	
	Cooling capacity unit (USRt)	y per	300≤x≤350	350 <x≤550< th=""><th>550<x≤750< th=""><th>750<x≤1,300< th=""></x≤1,300<></th></x≤750<></th></x≤550<>	550 <x≤750< th=""><th>750<x≤1,300< th=""></x≤1,300<></th></x≤750<>	750 <x≤1,300< th=""></x≤1,300<>
	Threshold COP v	alue	5.46	5.76	5.90	6.03
			I			II
	COP _{PJ,tc,i} is a re	calcul	lation of CO	P of project	chiller i (Co	$OP_{PJ,i}$) adjusting
	temperature cond	itions	from the proj	ect specific c	onditions to t	he standardizing
	conditions. $\text{COP}_{\text{PJ},i}$ is derived from specifications prepared for the quotation or					
	factory acceptance test data at the time of shipment by manufacturer.					
	[equation to calculate COP _{PJ,tc,i}]					
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled} + TD_{cooling})]$					
	$\div (37 - 7 + TD_{chilled} + TD_{cooling})]$					
	cooling/1					
	$COP_{PJ,tc,i}$: COP of project chiller <i>i</i> calculated under the standardizing					
	temperature conditions* [-]				_	
	$COP_{PI,i}$: COP of project chiller <i>i</i> under the project specific conditions					
	[-]					
	$T_{cooling-out,i}$: Output cooling water temperature of project chiller <i>i</i> set					
	under the project specific condition [degree Celsius]					
	$T_{chilled-out,i}$: Output chilled water temperature of project chiller <i>i</i> set					
	under the project specific condition [degree Celsius]					
	TD _{cooling} : Temperature difference between condensing temperature of					
	refrigerant and output cooling water temperature 1.5 degrees					
		Celsiu	us set as a defa	ault value [deg	gree Celsius]	

	TD _{chilled} : Temperature difference between evaporating temperature of			
	refrigerant and output chilled water temperature, 1.5 degrees			
	Celsius set as a default value [degree Celsius]			
	*The standardizing temperature conditions to calculate COP _{PJ,tc,i} Chilled water: output 7 degrees Celsius input 12 degrees Celsius Cooling water: output 37 degrees Celsius input 32 degrees Celsius			
Criterion 3	Periodical check is planned more than one (1) time annually.			
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is zero.			
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is prepared. In the case of replacing the existing chiller with the project chiller, a plan for prevention of releasing refrigerant used in the existing chiller to the air (e.g. re-use of the equipment) is prepared. Execution of this plan is checked at the time of verification, in order to confirm that refrigerant used for the existing one replaced by the project is prevented from being released to the air.			

E. Emission Sources and GHG types

Reference emissions				
Emission sources GHG types				
Power consumption by reference chiller CO2				
Project emissions				
Emission sources GHG types				
Power consumption by project chiller	CO ₂			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed. The COP of reference chiller is conservatively set as a default value in the following manner to

ensure the net emission reductions.

1. The COP value tends to increase as the cooling capacity becomes larger.

- 2. The reference COP, which has a certain cooling capacity, is set at a maximum value in corresponding cooling capacity range.
- 3. The maximum values of COP in each cooling capacity ranges are defined as $\text{COP}_{\text{RE},i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times \left(COP_{PJ,tc,i} \div COP_{RE,i} \right) \times EF_{elec} \}$$

REp: Reference emissions during the period p [tCO2/p]ECPJ,i,p: Power consumption of project chiller i during the period p [MWh/p]COPPJ,tc,i: COP of project chiller i calculated under the standardizing temperature conditions [-]

 $COP_{RE,i}$: COP of reference chiller *i* under the standardizing temperature conditions [-]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$				
ER _p	: Emission reductions during the period p [tCO ₂ /p]			
REp	: Reference emissions during the period p [tCO ₂ /p]			
PEp	: Project emissions during the period $p [tCO_2/p]$			

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
		The most recent published value
	When project chiller consumes only grid	by the Ministry of Environment
	electricity or captive electricity, the project	of Cambodia at the time of
	participant applies the CO ₂ emission factor respectively.	validation.
		[Captive electricity]
	When project chiller may consume both grid	For the option (a)
	and captive electricity, the project participant	Specification of the captive
	applies the CO ₂ emission factor with lower	power generation system
	value.	provided by the manufacturer
		$(\eta_{elec,CG} [\%]).$
	In case the captive electricity is generated by	CO ₂ emission factor of the fossil
	renewable energy source(s) and the amount of	fuel type used in the captive
	the captive electricity generated by the	power generation system
	renewable source(s) estimated from its	$(EF_{fuel,CG} [tCO_2/GJ])$
	generation capacities is equal to or less than	
	half of the total electricity consumption at the	For the option (b)
	project site, the portion of electricity generated	Generated and supplied
	by the renewable source(s) may be neglected in	electricity by the captive power
	the calculation of the captive CO_2 emission	generation system (EG _{PJ,CG,p}
	factor. If the amount of captive electricity	[MWh/p]).
	generated by renewable source(s) is more than	Fuel amount consumed by the
	half, the captive CO_2 emission factor is	captive power generation system
	determined by the following option (b) of "(2)	(FC _{PJ,CG,p} [mass or volume/p]).
	For captive electricity" using the total amount	Net calorific value (NCV $_{fuel,CG}$
	of captive electricity generated by both fossil	[GJ/mass or volume]) and CO ₂
	fuel and renewable sources for $EG_{PJ,CG,p}$.	emission factor (EF _{fuel,CG}
		[tCO ₂ /GJ]) of the fuel consumed
	[CO ₂ emission factor]	by the captive power generation
	(1) For grid electricity	system in order of preference:
	The most recent value available from the	1) values provided by the fuel
	source stated in this table at the time of	supplier;

validation is applied.

(2) For captive electricity
 Option (a) Calculated from its power generation efficiency (η_{elec,CG} [%]) obtained from manufacturer's specification
 The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$\mathrm{EF}_{\mathrm{elec}} = 3.6 \times \frac{100}{\eta_{\mathrm{elec,CG}}} \times \mathrm{EF}_{\mathrm{fuel,CG}}$$

Option (b) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation (FC_{PJ,CG,p}) and the amount of electricity generated (EG_{PJ,CG,p}) during the monitoring period p is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

 $EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$

$$\times \frac{I}{EG_{PJ,CG,p}}$$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type. 2) measurement by the project participants;
 3) regional or national default values;

4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1Vol.2 of 2006 IPCC Guidelines on National GHG Inventories.Lower value is applied.

[Captive electricity with diesel fuel] CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas]

2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas. CDM Methodological tool baseline "Determining the efficiency of thermal or electric generation energy systems version02.0" for the default efficiency for off-grid power plants.

	 The system is non-renewable generation system Electricity generation capacity of the system is less than or equal to 15 MW fuel type Diesel fuel Natural gas EF_{elec} 0.8 *1 0.46 *2 *1 The most recent value at the time of 				
COP _{RE,i}	 validation is applied. *2 The value is calculated with the equation in the option (a) above. The lower value of default effective CO₂ emission factor for natural gas (0.0543 tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied. The COP of the reference chiller <i>i</i> is selected from the default COP values in the following table in line with cooling capacity of the project chiller <i>i</i>. 				
	/unit ≤3 (USRt)	$\begin{array}{c c} 0 \leq x \\ 350 \\ 46 \\ 5.76 \\ \end{array}$	550 <x ≤750 5.90</x 	750 <x ≤1,300 6.03</x 	The default COP value is derived from the result of survey on COP of chillers from manufacturers that has high market share. The survey should prove the use of clear methodology. The COP _{RE,i} should be revised if necessary
COP _{PJ,i}	The COP of project chiller <i>i</i> under the project specific condition.				from survey result which is conducted by JC or project participants. Specifications of project chiller <i>i</i> prepared for the quotation or factory acceptance test data by

		manufacturer
T _{cooling-out,i}	Output cooling water temperature of project	Specifications of project chiller <i>i</i>
	chiller <i>i</i> set under the project specific condition.	prepared for the quotation or
		factory acceptance test data by
		manufacturer
T _{chilled-out,i}	Output chilled water temperature of project	Specifications of project chiller <i>i</i>
	chiller <i>i</i> set under the project specific condition.	prepared for the quotation or
		factory acceptance test data by
		manufacturer