JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Cambodia	
Name of the methodology proponents	Institute for Global Environmental Strategies	
submitting this form		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable-/non-renewable	
Methodology applies	sources);	
Title of the proposed methodology, and	Installation of Solar PV System, Ver 01.0	
version number		
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	07/12/2016	

History of the proposed methodology

Version	Date	Contents revised
1.0	07/12/2016	Initial Edition

A. Title of the methodology

Installation of Solar PV System, Ver 01.0

B. Terms and definitions

Terms	Definitions	
Solar photovoltaic (PV) system	An electricity generation system which converts sunlight into	
	electricity by the use of photovoltaic (PV) modules. The	
	system also includes ancillary equipment such as inverters	
	required to change the electrical current from direct current	
	(DC) to alternating current (AC).	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Displacement of grid electricity and/or captive electricity using	
measures	diesel fuel as power source by installation and operation of the	
	solar PV system(s).	
Calculation of reference	Reference emissions are calculated on the basis of the AC	
emissions	output of the solar PV system(s) multiplied by either; 1) the	
	conservative emission factor of National Grid electricity or 2)	
	the conservative emission factor of diesel power generator in	
	off-gird area.	
Calculation of project	Project emissions are the emissions from the solar PV system(s),	
emissions	which are assumed to be zero.	
Monitoring parameters	The quantity of the electricity generated by the project solar PV	
	system(s) and category of the day d.	

D. Eligibility criteria		
This methodology is applicable to projects that satisfy all of the following criteria.		
Criterion 1	The project installs solar PV system(s).	

Criterion 2	The PV modules have obtained a certification of design qualifications (IEC	
	61215, IEC 61646 or IEC 62108) and safety qualification (IEC 61730-1 and	
	IEC 61730-2).	
Criterion 3	The equipment to monitor output power of the solar PV system(s) and	
	irradiance is installed at the project site.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Consumption of grid electricity and/or captive electricity	CO ₂	
Project emissions		
Emission sources	GHG types	
Generation of electricity from solar PV system(s)	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Considering that the flowing electricity of Cambodian grids is consisted of electricity generated by coal-fired power plant, oil power plant, hydropower plant, biomass power plant and imported electricity, the conservative operating margin is applied to reflect an electricity mix in National Grid of Cambodia in order to secure net emission reduction. Due to the limited data for heat efficiency of each power plant, the emission factor for each electricity source is set to $0.750 \text{ tCO}_2/\text{MWh}$ for the coal-fired power plants and $0.533 \text{ tCO}_2/\text{MWh}$ for the oil-fired power plants which is calculated by applying the default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generator. Since those emission factors have not been achieved in Cambodia, they lead to net emission reductions. For the emission factor of import electricity, the hydropower plants and the biomass power plants, 0 tCO₂/MWh is applied. As a result, in case the PV system in a proposed project activity is connected to the national grid, the emission factor is calculated to be $0.353 \text{ tCO}_2/\text{MWh}$. In case the PV system in a proposed project activity is connected to an internal grid which is not connected to the national grid, the emission factor is set to $0.533 \text{ tCO}_2/\text{MWh}$.

F.2. Calculation of reference emissions

For calculation of reference emissions, either Case1 or Case 2 is selected.

Case1: If the project PV system supplies electricity to a national grid or the annual business days of the facilities to which the project PV system supplies electricity are 365 days or 366 days, the following formula is applied.

$$RE_{p} = \sum_{i} (EG_{i,p} \times EF_{RE,i})$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EG_{i,p}$: The quantity of the electricity generated by the project solar PV system *i* during the period *p* [MWh/p]

EF_{RE, i} : The reference CO₂ emission factor for the project solar PV system *i* [tCO₂/MWh]

Case2: If the project PV system does not supply electricity to a national grid and the annual business days of the facilities to which the project PV system supplies electricity are less than 365 days, the following formula is applied.

$$RE_{p} = \sum_{i} \sum_{d} (EG_{i,d} \times \varphi_{d} \times EF_{RE,i})$$

 RE_p : Reference emissions during the period p [tCO₂/p]

- $EG_{i,d}$: The quantity of the electricity generated by the project solar PV system *i* on monitoring date *d* during the period *p* [MWh/p]
- φ_d : Category of the day d. [1 for business days, 0 for holidays]

EF_{RE, i} : The reference CO₂ emission factor for the project solar PV system *i* [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = 0$$

 PE_p : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$		
$= RE_p$		
ER_p	: Emission reductions during the period p [tCO ₂ /p]	
RE_p	: Reference emissions during the period p [tCO ₂ /p]	
PE_p	: Project emissions during the period p [tCO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$EF_{RE,i}$	The reference CO ₂ emission factor for the	Additional information
	project solar PV system <i>i</i> .	The default value should be
		revised if necessary from
	The value for $EF_{RE,i}$ is selected from the	survey result which is
	emission factor based on the national grid	conducted by JC.
	$(EF_{RE,i,grid})$ or based on captive diesel power	
	generator $(EF_{RE,i,cap})$ in the following manners:	
	In case the PV system in a proposed project	
	activity is connected to the national grid,	
	$EF_{RE,i,grid}$, 0.353 tCO ₂ /MWh is applied.	
	In case the PV system in a proposed project	
	activity is connected to an internal grid which	
	is not connected to the national grid, $\text{EF}_{\text{RE},i,\text{cap}}$,	
	0.533 tCO ₂ /MWh is applied.	