JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Cambodia	
Name of the methodology proponents	Minebea Co., Ltd. & Mitsubishi UFJ Morgan	
submitting this form	Stanley Securities Co., Ltd.	
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Installation of LED street lighting system with	
version number	wireless network control (Version 01.0)	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
Date of completion	22/03/2016	

History of the proposed methodology

Version	Date	Contents revised
01.0	22/03/2016	First Edition

A. Title of the methodology

Installation of LED street lighting system with wireless network control, Version 01.0

B. Terms and definitions

Terms	Definitions	
Wireless network control	Operation of a network of equipment without any kind of	
	cables where data are exchanged through the use of radio	
	wave. It consists of nodes that collect information from	
	individual equipment and gateways that act as the central	
	collecting points and communicate data with a wider	
	network.	
LED lamp	A lighting device utilizing light-emitting diode (LED), which	
	is a semiconductor device that emits visible light when an	
	electric current passes through it.	
HID lamp	An electric discharge lamp in which the light-producing arc	
	is stabilized by wall temperature and the arc has a bulb wall	
	loading in excess of 3 watts per square centimetre.	
	HID lamps include groups of lamps known as high pressure	
	mercury, metal halide and high pressure sodium lamps.	
	[Source: International Electrotechnical Vocabulary (IEV)	
	845-07-19]	
Luminaire efficiency	Luminaire efficiency is the capacity of light flux per watt.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	The street lighting system that introduces LED lamps and	
measures	lighting control devices with utilization of wireless network is	
	installed on streets to save electricity consumption.	
Calculation of reference	Reference emissions are calculated as emissions from	
emissions	consumption of grid electricity by lighting system utilizing HID	
	lamps for providing the same service level as in the project.	

Calculation of project	Project emissions are calculated as the emissions from	
emissions	consumption of grid electricity by LED street lighting system	
	with wireless network control installed under the project.	
Monitoring parameters	1. Total operating hours of project lighting system <i>i</i> during the	
	period p (hrs/p)	
	2. Total amount of electricity consumed in the project lighting	
	system i during the period p (Wh/p)	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs LED street lighting system utilizing wireless network	
	control, which is connected to an electricity grid system.	
Criterion 2	All lighting equipment in one lighting system has the same specifications.	
Criterion 3	Wireless network technology enables controlling of the volume of lighting.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Grid electricity consumption by the HID street lighting system.	CO_2	
Project emissions		
Emission sources	GHG types	
Grid electricity consumption by the LED street lighting system with	CO ₂	
wireless network control.		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated on the basis of the rated power consumption of project street lighting systems, ratio of luminaire efficiency of project/reference lighting, operating hours of reference lighting systems and CO_2 emission factor of the electricity systems to which the lighting systems are connected.

In order to ensure net emission reductions, a conservative default value is established for luminaire efficiency of reference lighting system taking into account the highest luminaire efficiency out of high pressure sodium lamps used on major arterial roads of Japan.

F.2. Calculation of reference emissions

Reference emissions are calculated in line with the following equation. The operating hours are assumed to be the same as the project.

$$RE_p = \sum_i P_i \times (\boldsymbol{\eta}_{PJ,i} \div \boldsymbol{\eta}_{RE}) \times PO_{i,p} \times EF_{grid} \times 10^{-6}$$
 (1)

 RE_p Reference emissions during the period p (tCO₂/p)

 P_i Rated power consumption of a lighting equipment used in the project

lighting system i (W)

 $\eta_{PJ,i}$ Luminaire efficiency of a lighting equipment used in the project lighting

system i (lm/W)

 η_{RE} Luminaire efficiency of the reference lighting system (lm/W)

 $PO_{i,p}$ Total operating hours of project lighting system i during the period p

(hrs/p)

*EF*_{grid} Grid emission factor of Cambodian grid (tCO₂/MWh)

i Identification number of the lighting system

G. Calculation of project emissions

Project emissions are calculated in line with the following equation.

$$PE_p = \sum_{i} PEC_{i,p} \times EF_{grid} \times 10^{-6}$$
 (2)

 PE_p Project emissions during the period p (tCO₂/p)

 $PEC_{i,p}$ Total amount of electricity consumed in the project lighting system i

during the period p (Wh/p)

EF_{grid}	Grid emission factor of Cambodian grid (tCO ₂ /MWh)
i	Identification number of the lighting system

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$
 (3)

 ER_p Emissions reduction during the period p (tCO₂/p)

 RE_p Reference emissions during the period p (tCO₂/p)

 PE_p Project emissions during the period p (tCO₂/p)

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
P_i	Rated power consumption of a lighting	Information by manufacturer
	equipment used in the project lighting	
	system i (W)	
$\eta_{PJ,i}$	Luminaire efficiency of a lighting	Information by manufacturer
	equipment used in the project lighting	
	system i (lm/W).	
ηRE	Luminaire efficiency of the reference	The rated lamp efficiency is
	lighting system (lm/W).	based on the specifications
	A default value (62 lm/W) based on the	of HPS NH220 and is
	HPS lamp with the highest efficiency	adjusted by the loss by
	meeting Japan's highway lighting	equipment based on the
	standards for major arterial roads (HPS	evaluation by NH220's
	NH220).	manufacturer and the power
		factor based on Japan
		Industrial Standard (JIS C
		8109).
EF_{grid}	Grid emission factor of Cambodian grid	The most recent published
	(tCO ₂ /MWh)	value by the Ministry of

	Environment of Cambodia
	at the time of validation.