JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Kingdom of Cambodia	
Name of the methodology proponents	Tokyo Carbon Management Ltd (TCM)	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introduction of High Efficiency	
version number	Firewood Cookstove to Replace Traditional	
	Cookstove, version 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	⊠Additional information:	
Date of completion	31/12/2024	

History of the proposed methodology

Version	Date	Contents revised
01.0	31/12/2024	First Edition

A. Title of the methodology

Energy Saving by Introduction of High Firewood Efficiency Cookstove to Replace Traditional Cookstove, version 01.0

B. Terms and definitions

Terms	Definitions	
Traditional cookstove	The cookstove style in which three-stones are placed on the	
	ground using firewood (not charcoal), or a cookstove with no	
	improved combustion air supply or flue gas ventilation.	
	Actually, efficiency of traditional cookstove is usually 10-	
	15%.	
Reference cookstove	A cookstove that uses woody fuel and is identified as an	
	improved cookstove, which is the most realistic alternative	
	to a traditional cookstove. These cookstoves are widely	
	available in Cambodia and serve as an appropriate baseline	
	for comparison.	
Project cookstove (High	Project cookstove is a cookstove that is more efficient than a	
Firewood Efficiency	reference cookstove. Project cookstove that reduces	
Cookstove)	greenhouse gas (GHG) emissions from traditional baseline	
	technologies through energy efficiency improvements and/or	
	fuel switching to a less GHG-intensive fuel.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	The proposed project activity aims at reducing the use of and	
measures	demand for non-renewable biomass that would have been used	
	for cooking by distributing improved cookstove (ICS, project	
	cookstove) to households and/or communities.	
Calculation of reference	Reference emissions are calculated by using the following	
emissions	parameters:	

- Quantity of fuel used per day for each project device of type *i* during the period *p* (tonnes or m³/day)
 - Efficiency of project devices of type i in the period p
 (fraction)
 - Efficiency of reference devices that are replaced by project devices (fraction)
 - Net calorific value of project fuel used in project device type i (TJ/m³)
 - Number of commissioned project devices of type *i* during the period *p* (number)
 - Proportion of commissioned project devices of type i during the period p (fraction)
 - Days of the monitoring period during the period p (number)
 - CO₂ emission factor for wood fuel use (tCO₂/TJ)
 - Non-CO₂ emission factor for wood fuel use (tCO₂/TJ)
 - Fraction of woody biomass that can be established as nonrenewable biomass (fraction)
 - Discount factor to account for the potential source of emissions which may occur due to the use of biomass by non-project households/communities

Calculation of project emissions

Project emissions are calculated by using the following parameters:

- Quantity of fuel used per day for each project device of type *i* during the period *p* (tonnes or m³/day)
- Net calorific value of project fuel used in project device type i (TJ/m³)
- Number of commissioned project devices of type *i* during the period *p* (number)
- Proportion of commissioned project devices of type *i* during the period *p* (fraction)
- Days of the monitoring period during the period p (number)
- CO₂ emission factor for wood fuel use (tCO₂/TJ)
- Non-CO₂ emission factor for wood fuel use (tCO₂/TJ)
- Fraction of woody biomass that can be established as nonrenewable biomass (fraction)

	Discount factor to account for the potential source of emissions which may occur due to the use of biomass by non-project households/communities
Monitoring parameters	 Quantity of fuel used per day for each project device of type i during the period p (tonnes or m³/day) Number of commissioned project devices of type i during the period p (number) Proportion of commissioned project devices of type i during the period p (fraction) Days of the monitoring period during the period p (number) Fraction of woody biomass that can be established as non-renewable biomass (fraction) Efficiency of project devices of type i in the period p (fraction)

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project distributes cookstoves to households or community (ies) where the		
Cincilon			
	baseline cookstove is three-stone fire.		
Criterion 2	The project cookstoves exclusively use wood fuel.		
Criterion 3	The methodology is applicable to the introduction of single pot or multi pot		
	portable or in-situ cookstoves with rated efficiency of at least 26 per cent. The		
	options for testing and certification of rated efficiency as well as supporting		
	documentation (e.g. certificate issued by third party or test results) are available at		
	the time of validation.		
Criterion 4	Non-renewable biomass has been used in the project region since 31 December		
	1989, using survey methods or referring to published literature, official reports or		
	statistics.		
Criterion 5	Each project cookstove is given an identifiable serial number to avoid double		
	counting of emission reductions.		
Criterion 6	The project has procedures to prevent double counting of emission reductions, for		
	example to avoid that project stove manufacturers, wholesale providers or others		
	claim credit for emission reductions from the project devices.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
	CO_2	
Wood fuel consumption by reference cookstove	N_2O	
	CH ₄	
Project emissions		
Emission sources	GHG types	
	CO_2	
Wood fuel consumption by project cookstove	N_2O	
	CH ₄	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emissions are calculated by multiplying quantity of fuel used by project device, the ratio of efficiency of project device and efficiency of reference device, net calorific value of project fuel, number of commissioned project devices, proportion of commissioned project devices, days of the monitoring period, CO₂ emission factor for wood fuel use, Non-CO₂ emission factor for wood fuel use, fraction of woody biomass that can be established as non-renewable biomass and discount factor to account for the potential source of emissions which may occur due to the use of biomass by non-project households/communities.

In order to ensure net emission reductions, conservative default value is established for efficiency of reference cookstove taking into account the highest efficiency of cookstove used in the rural of Cambodia.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} BC_{pro,i,p} \times \frac{\eta_{new,i,p}}{\eta_{ref}} \times NCV_{pro,i} \times N_{pro,i,p} \times \eta_{pro,i,p} \times Days_{p} \times (EF_{wf,CO2} + EF_{wf,nonCO2}) \times f_{NRB} \times 0.95$$

Where:

 RE_p : Reference emissions during the period p (tCO₂/p)

$BC_{pro,i,p}$: Quantity of fuel used per day for each project device of type i during the		
	period p (tonnes or m ³ /day)		
$\eta_{new,i,p}$: Efficiency of project devices of type i in the period p (fraction)		
η_{ref}	: Efficiency of reference devices that are replaced by project devices		
	(fraction)		
$NCV_{pro,i}$: Net calorific value of project fuel used in project device type i (TJ/m ³)		
$N_{pro,i,p}$: Number of commissioned project devices of type i during the period p		
	(number)		
$\eta_{pro,i,p}$: Proportion of commissioned project devices of type i during the period p		
	(fraction)		
$Days_p$: Days of the monitoring period during the period p (number)		
$EF_{wf,CO2}$: CO ₂ emission factor for wood fuel use (tCO ₂ /TJ)		
$EF_{wf,nonCO2}$: Non-CO ₂ emission factor for wood fuel use (tCO ₂ /TJ)		
f_{NRB}	: Fraction of woody biomass that can be established as non-renewable		
	biomass (fraction)		
0.95	: Discount factor to account for the potential source of emissions which		
	may occur due to the use of biomass by non-project		
	households/communities		
i	: Project device type		

G. Calculation of project emissions

$PE_{p} = \sum_{i} BC_{pro,i,p} \times NCV_{pro,i} \times N_{pro,i,p} \times \eta_{pro,i,p} \times Days_{p} \times (EF_{wf,CO2})$		
	$+ EF_{wf,nonCO2}) \times f_{NRB} \times 0.95$	
Where:		
PE_p	: Project emissions during the period p (tCO ₂ / p)	
$BC_{pro,i,p}$: Quantity of fuel used per day for each project device of type i during the	
	period p (tonnes or m^3/day)	
$NCV_{pro,i}$: Net calorific value of project fuel used in project device type i (TJ/m³)	
$N_{pro,i,p}$: Number of commissioned project devices of type i during the period p	
	(number)	
$\eta_{pro,i,p}$: Proportion of commissioned project devices of type i during the period	
	p (fraction)	
$Days_p$: Days of the monitoring period during the period p (number)	
$EF_{wf,CO2}$: CO ₂ emission factor for wood fuel use (tCO ₂ /TJ)	

$EF_{wf,nonCO2}$: Non-CO ₂ emission factor for wood fuel use (tCO ₂ /TJ)		
f_{NRB}	: Fraction of woody biomass that can be established as non-renewable		
	biomass (fraction)		
0.95	: Discount factor to account for the potential source of emissions which		
	may occur due to the use of biomass by non-project		
	households/communities		
i	: Project device type		

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

Where:

 ER_p : Emission reductions during the period p (tCO₂/p)

 RE_p : Reference emissions during the period p (tCO₂/p)

 PE_p : Project emissions during the period p (tCO₂/p)

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
$EF_{wf,CO2}$	CO ₂ emission factor for wood	The following data sources may be used,
	fuel use (tCO ₂ /TJ)	listed in descending order of preference:
		Option 1: Project-specific value
		Option 2: Regional or national default
		values
		• Option 3: Default value from the most
		recent version of the IPCC Guidelines for
		National Greenhouse Gas Inventories
$EF_{wf,nonCO2}$	Non-CO ₂ emission factor for	The following data sources may be used,
	wood fuel use (tCO ₂ /TJ)	listed in descending order of
		preference:
		Option 1: Project-specific value
		Option 2: Regional or national default

		values
		• Option 3: Default value from the most
		recent version of the IPCC Guidelines for
		National Greenhouse Gas Inventories
$NCV_{pro,i}$	Net calorific value of project fuel	The following data sources may be used,
	used in project device type i	listed in descending order of preference:
	(TJ/m^3)	• Option 1: Project-specific values
		• Option 2: National default value
		• Option 3: Default value from the most
		recent version of the IPCC Guidelines for
		National Greenhouse Gas Inventories
η_{ref}	Weighted average efficiency of	Additional information
	reference devices that are	
	replaced by project devices	
	(fraction)	
	Default value: 0.26	
HHs	Average household size	Baseline survey
	(person/household)	The campaign must achieve a confidence
		and precision of at least 90/10 for the
		target parameter of average household
		size