JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

8 1 1 1 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	to in tot submitting the proposed methodology		
Host Country	The Kingdom of Cambodia		
Name of the methodology proponents	Tokyo Carbon Management Ltd (TCM)		
submitting this form			
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies			
Title of the proposed methodology, and	Energy Saving by Introduction of Low		
version number	Greenhouse gas-emitting safe drinking water		
	production systems, version 01.0		
List of documents to be attached to this form The attached draft JCM-PDD:			
(please check):			
Date of completion	23/02/2024		

History of the proposed methodology

Version	Date	Contents revised
01.0	31/07/2023	First edition

A. Title of the methodology

Energy Saving by Introduction Low Greenhouse gas-emitting safe drinking water production systems, version 01.0

B. Terms and definitions

Terms	Definitions		
Point of Use (POU)	Devices treat only the water intended for direct consumption,		
	typically at a single tap or limited number of taps		
Point of Entry (POE)	Devices are typically installed to treat all water entering a single		
	home, business, school, or facility (USEPA, 2006)		
Distribution network	It is a public service which is provided by government to people		
	living within its jurisdiction, either directly or through an authorized		
	party		
Water kiosk	It is a facility to treat water to be delivered or sold to final consumers		
	in appropriate conditions of sealed storage and/or residual capacity		
	of disinfection, in such a way as to prevent recontamination before		
	the final consumption as drinking water		

C. Summary of the methodology

Items	Summary		
GHG emission	The intention of the project activity involves the installation of low		
reduction measures	greenhouse gas emitting safe drinking water purifiers (SDWPs) to		
	provide clean drinking water to the households/communities/		
	schools/institutions (hereafter "users"). For this reason, project		
	activity aims at reducing the wood fuel consumption of traditional		
	stove users by distributing water purifiers to households and/or		
	schools and/or institutions.		
Calculation of	The reference emission is calculated for each project water purifier		
reference emissions	by using the following parameters:		
	• Total quantity of water purified by the project		
	• Fraction of functional appliances that are providing the safe		

	drinking water		
	• Fraction of the population served by the project activity for which		
	the common practice of water treatment is or would have been		
	water boiling		
	• Specific energy consumption required to boil one litre of water		
	· Proportions of reference fuel (NRB and/or fossil fuels) used in		
	the absence of the project activity		
	• Fraction of non-renewable fuel used in the absence of the project		
	activity		
	• Emission factor of the fuel substituted		
Calculation of project	The project emission is calculated for each project water purifier by		
emission	using the following parameters:		
	• Emissions from fossil fuel combustion		
	Emissions from electricity consumption		
Monitoring parameters	• Number of population who consumes the purified water serviced		
	by the project activity		
	• Quantity of purified water		
	· Fraction of functional appliances that are providing the safe		
	drinking water		
	• Usage time		
	Check for SDW public distribution network		
	• Quality of safe drinking water		
	• Date of commissioning of the project device		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	This methodology comprises introduction of low greenhouse gas emitting
	water purification systems to provide safe drinking water (SDW). Water
	purification technologies that involve point-of use (POU) or point-of-entry
	(POE) treatment systems for residential or institutional applications such as
	systems installed at a school or a community centre, institutions are
	included. The examples include, but are not limited to, water filters (e.g.
	membrane, activated carbon, ceramic filters), solar energy powered
	ultraviolet (UV) disinfection devices, solar disinfection techniques,
	photocatalytic disinfection equipment, pasteurization appliances, chemical
	disinfection methods (e.g. chlorination), combined treatment approaches

	(e.g. flocculation plus disinfection). The methodology is also applicable to
	water kiosks that treat water using one or more of the following
	technologies: chlorination, combined flocculant/disinfection powders and
	solar disinfection. ¹ In case the water kiosk is using solar disinfection,
	project proponents need to implement measures to prevent recontamination
	(e.g. disinfecting containers, sealing containers and hygiene training);
Criterion 2	Soil filtration schemes (boreholes, wells) that include container disinfection
	(e.g. chlorination) may be applied. Project proponents demonstrate ex ante
	that rehabilitation and/or construction of the wells complies with relevant
	national and/or international standards and that measures are taken to ensure
	that water and well are not contaminated;
Criterion 3	Prior to the implementation of the project activity, a public distribution
	network supplying SDW to the project boundary does not exist;
Criterion 4	It is demonstrated based on laboratory testing or official notifications (for
	example notifications from the national authority on health) that the
	application of the project technology/equipment achieves compliance either
	with: (i) the Comprehensive Protection performance target as per
	"Evaluating household water treatment options: Health based targets and
	microbiological performance specifications" (WHO, 2011) and
	"International Scheme to Evaluate Household Water Treatment
	Technologies" (WHO, 2014); or (ii) an applicable national standard or
	guideline. Applicable national standard should be based on laboratory
	efficacy testing that, at a minimum, includes quantitative microbial
	measures of pre- and post-treatment challenge waters that are representative
	of potential drinking water sources, and that includes measured reductions
	based on at least one pathogen class (bacteria, viruses, protozoa);
Criterion 5	In cases where the life span of the water treatment technologies of the
	project activity is shorter than the period mentioned in the Bilateral
	Document, documented measures are in place to ensure that end users have
	access to replacement purification systems of comparable quality;
Criterion 6	It should be demonstrated that the project appliances use technologies that
	meet the technology standards and that they deliver microbiologically safe

¹ According to "A toolkit for monitoring and evaluating household water treatment and safe storage programmes" (WHO – 2012) – Annex A - Summary of HWTS methods, the use of these technologies can provide protection against recontamination.

	drinking water;		
Criterion 7	It should be demonstrated that the proposed method for distribution of		
	project devices including the method to avoid double counting of emission;		
	reductions such as unique identifications of product and end-user locations		
	(e.g. programme logo);		
Criterion 8	It should be demonstrated that the proposed procedures prevent double		
	counting of emission reductions, for example to avoid that project stove		
	manufacturers, wholesale providers or others claim credit for emission		
	reductions from the project devices.		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Esseil fast and/an new annexel to bismass (MDD) communities for	CO_2		
Fossil fuel and/or non-renewable biomass (NRB) consumption for	NO ₂		
boiling water	CH4		
Project emissions			
Emission sources	GHG types		
	CO_2		
Fossil fuel combustion and electricity consumption for boiling water	NO ₂		
	CH ₄		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emissions are calculated for each reference water purifier by multiplying the quantity of purified water, the fraction of functional appliances providing the safe drinking water, fraction of the population served by the project activity which the common practice of water treatment is/would have been water boiling, specific energy consumption required to boil one litre of water, proportion of fuel type used in the absence of the project activity, fraction of non-renewable fuel in the absence of the project activity, and emission factor of fuel substituted. It is assumed that in the absence of project activity, the reference scenario is the continued use of fossil fuel and/or non-renewable biomass (NRB) to boil drinking water as means of water

purification. Since the efficiency of the water boiling systems being replaced are inversely proportional to the amount of reference emissions. Thus, the efficiency of the reference water boiling systems is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. 0.10 default value may be optionally used if the replaced system or the system that would have been used is a three-stone fire or a conventional system for woody biomass lacking improved combustion air supply mechanism and flue gas ventilation system that is without a grate as well as a chimney; for the rest of the systems using woody biomass 0.2 default value may be optionally used.
- 2. 0.5 default value may be used if the replaced system or the system that would have been used is a fossil fuel combusting system
- 3. The efficiency of the water boiling system will use weighted average values if more than one type of system is encountered.

F.2. Calculation of reference emissions

$RE_p = 0.95 * QPW$	$\times m \times X_{boil}$	×SEC	Equation (1)
×∑	$BL_{fuel,i} \times f_i$	$ imes$ EF $_{projected}$ fossil fuel,i $ imes$ 10) ⁻⁹
i			
Where:			
REp	= Refere	ence emissions during the peri	od p (tCO ₂ e/p)
QPW_p	= Total	quantity of water purified by t	he project in the period
	<i>p</i> (L/p), calculated based on the follo	owing option:
	Optio	n 1: Directly monitored	
	Optio	n 2: Indirectly monitored fol	lowing the procedures
	descri	bed in Option below:	
	Option	n 2.1:	
		$QPW_p = \sum q_{,i} \times t$	Equation (2)
	Where	e:	
	- q _i : 0	Capacity of the water purific	cation device (L/hour)
	provid	led by the manufacturer	
	- t _p : U	sage time during the period p	(hours/p)
	Option	n 2.2:	

		$QPW_p = P_p \times \min(QWP_{pp}; 5.5) \times D_p$ Equation (3)
т	=	Where: - P_p : Population who consumes the purified water serviced by the project activity in the period p - QPW_{pp} : Average volume of drinking water per person per day (L/person/day) determined at the time of validation through a survey - D_p : Number of operating days during the period p Fraction of functional appliances that are providing the SDW. Only project appliances that (i) use technologies that meet the technology standards and (ii) are operating or replaced by an equivalent in service appliance and (iii) deliver microbiologically safe drinking water, are counted for emission reductions
X _{boil}	=	Fraction of the population served by the project activity for which the common practice of water treatment is or would have been water boiling. It is determined ex ante through surveys
SEC	=	Specific energy consumption required to boil one litre of water (kJ/L), to be calculated according equation below: $SEC = [WH \times (T_f - T_i) + 0.01 \times WHE]/\eta_{wb}$ Equation (4)
		 Where: WH: Specific heat of water (kJ/L °C). Use a default value of 4.186 kJ/L °C T_f: Final temperature (°C). Use a default value of 100 °C T_i: Initial temperature of water (°C). Use annual average ambient temperature; or use a default value of 20°C WHE: Latent heat of water evaporation (kJ/L). Use a default value of 2260 kJ/L. The latent heat required to boil one litre of water for five minutes is assumed to be equivalent to latent heat for the evaporation of 1% of the water volume (WHO recommends a minimum duration of

		five minutes of water boiling) - η_{wb} : Efficiency of the water boiling systems being replaced, estimated ex ante.
BL _{fuel,i}	=	Proportions of reference fuel type i (NRB and/or fossil fuels) used in the absence of the project activity (fraction)
fi	=	Fraction of non-renewable fuel type <i>i</i> used in the absence of the project activity in the period <i>p</i> . For biomass, it is the fraction of woody biomass that can be established as non-renewable biomass (f_{NRB}). If the reference fuel is fossil fuel, the value to be applied is 1.
$EF_{projected}$ fossil fuel,i	=	Emission factor of the fuel type i substituted (tCO ₂ e/TJ)
0.95	=	Discount factor to account for potential use of biomass by non- project households/communities

G. Calculation of project emissions

If the operation of the project water purification system involves consumption of fossil fuels and/or electricity, CO₂ emissions from on-site consumption of fossil fuels and electricity due to the project activity will be accounted for as project emissions.

$$PE_p = PE_{FF,p} + PE_{EC,p}$$
 Equation (5)

Where:

 $PE_{p} = Project emissions during the period p (tCO_{2}e/p)$ $PE_{FF,p} = Emissions from fossil fuel combustion. CO_{2} emissions from fossil fuel combustion in process are calculated based on the quantity of fuels combusted and the CO_{2} emission coefficient of those fuels
<math display="block">PE_{FF,p} = \sum_{i} FC_{i,p} \times COEF_{i} \qquad Equation (6)$ $- FC_{i,p}: \text{ the quantity of fuel type } i \text{ combusted during the period } p \text{ (mass or volume unit/p)}$ $- COEF_{i}: \text{ the CO_{2} emission coefficient of fuel type } i (tCO_{2}/mass or volume unit)$ - i: the fuel types combusted in process during the period p

PE _{EC,p}	=	Emissions from electricity consumption	
		$PE_{EC,p} = \sum_{j} EC_{PJ,j,p} \times EF_{EF,j} \times (1 + TDL_j) $ Equation (7)	
		- EC _{PJ,j,p} : Quantity of electricity consumed by the project electricity	
		consumption source j in the period p (MWh/p)	
		- $EF_{EF,j}$: Emission factor for electricity generation for source j	
		(tCO ₂ /MWh)	
		- TDL _j : Average technical transmission and distribution losses for	
		providing electricity to source <i>j</i>	
		- j : Sources of electricity consumption in the project during the period p	

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$	Equation (8)
Where:		
ERp	= Emission reductions in the pe	$\operatorname{riod} p \left(\operatorname{tCO}_2 e/p \right)$
RE _p	= Reference emissions in the pe	eriod p (tCO ₂ e/p)
PEp	= Project emissions in the perio	$d p (tCO_2 e/p)$

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
QPW _{pp}	Average volume of	Estimated through ex ante survey or
	drinking water per	official data, or peer reviewed literature or
	person per day	local expert opinion. Alternatively, a
		default value of 3 litres per person per day ²
		can be used. The maximum value of 5.5
		litres per person per day are not to be
		exceeded
LS	Life span of water	Manufacturer's specifications. In cases
	treatment technologies	where the life span of the water treatment
		technologies of the project activity is
		shorter than the period mentioned in the

² Based on WHO recommendations (Technical Notes on Drinking Water, Sanitation and Hygiene in Emergencies. Table 9.1: Simplified table of water requirements for survival (per person).

η _{wb}	Efficiency of the water boiling systems being replaced	Bilateral Document, documented measures are in place to ensure that end users have access to replacement purification systems of comparable quality Use one of the options below: (a) The efficiency of the water boiling system shall be established using representative sampling methods or based on referenced literature values (fraction), use weighted average values if more than one type of system is encountered; (b) 0.10 default value may be optionally used if the replaced system or the system that would have been used is a three-stone fire or a conventional system for woody biomass lacking improved combustion air supply mechanism and flue gas ventilation system that is without a grate as well as a chimney; for the rest of the systems using
		woody biomass 0.2 default value may be optionally used;(c) 0.5 default value may be used if the replaced system or the system that would have been used is a fossil fuel combusting
		system
BL _{fuel,i}	Proportions of reference fuel type <i>i</i> (NRB and fossil fuel)	Estimated ex ante through a survey or official data or peer reviewed literature or local expert opinion
fi	Fraction of non- renewable fuel type <i>i</i>	If the reference fuel is fossil fuel use a default value of 1.0 Other case, the parameter is calculated by third party or based on national data
EF _{projected} fossil fuel,i	Emission factor of the fuel(s) type <i>i</i> substituted	If the fuel displaced is NRB, this parameter can be sourced from table below:Emission factor of fossil fuels projected to substitute non-renewable woody

		biomass by similar	consumers
		(tCO2e/TJ)	
		Middle East and North	63.9
		Africa	
		East Asia and the Pacific	85.7
		Europe and Central Asia	57.8
		Latin America and the	68.6
		Caribbean	
		South Asia	64.4
		Sub-Saharan Africa	73.2
X _{boil}	Fraction of the	Established ex ante through	survey
	population serviced by		
	the project activity for		
	which the common		
	practice of water		
	purification is or would		
	have been water boiling		
$oldsymbol{q}_{\mathrm{i}}$	Capacity of the water	Manufacturer's specification	L
	purification device		
0.95	Discount factor to	Based on page 09 of UNFC	CC approved
	account for potential use	methodology AMS-III.AV v	ersion 08.0
	of biomass by non-		
	project		
	households/communities		
COEF _i	the CO ₂ emission	The parameter is calculated u	C
	coefficient of fuel type <i>i</i>	version of the "CDM tool	
		calculate project or leakage	
		from fossil fuel combustion"	
TDL _j	Average technical	Applied the latest version of	
	transmission and	Tool 05: Baseline, project an	
	distribution losses for	leakage emissions from elec	-
	providing electricity	consumption and monitoring	
	to source <i>j</i>	electricity generation", choo	se one
		value of the following case:	umption from
		- In case of electricity cons	-
		off-grid captive power pl	ants, assume

		$TDL_j = 0$ as a simplification
		- In case of electricity consumption from
		the grid or both the grid and captive power
		plant(s), use as default values of 20%
EF _{EF,j}	Emission factor for	The most recent value available at the time
	electricity generation for	of validation is applied and fixed for the
	source j	monitoring period thereafter.
		The data is sourced from "Grid Emission
		Factor of Cambodia"
	Specific heat of water.	Applied the CDM Methodeless AMS
WH	Use a default value of	Applied the CDM Methodology AMS-
	4.186 kJ/L°C	III.AV
T	Final temperature. Use a	Boiling point of water at standard
Tf	default value of 100°C	conditions
		Ambient temperature data must be from
		globally accepted data sources, for
		example data published by the National
	Initial temperature of	Aeronautics and Space Administration
Ti	water. Use a default	(NASA) or the National Renewable
- 1	value of 20°C	Energy Laboratory (NREL). Data can be
		used only if they are for a location that can
		be demonstrated to be representative of the
		project location
		Use a default value. The latent heat
		required to boil one litre of water for five
	Latent heat of water evaporation	minutes is assumed to be equivalent to
WHE		latent heat for the evaporation of 1% of the
,, 112		water volume (WHO recommends a
		minimum duration of five minutes of
		water boiling)