JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kingdom of Cambodia
Name of the methodology proponents	Institute for Global Environmental Strategies
submitting this form	
Sectoral scope(s) to which the Proposed	3. Energy demand
Methodology applies	
Title of the proposed methodology, and	Installation of inverters to distribution pumps in
version number	water treatment plant, Version 01.0
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	⊠Additional information
Date of completion	02/09/2019

History of the proposed methodology

Version	Date	Contents revised
01.0	02/09/2019	First Edition

A. Title of the methodology

Installation of inverters to distribution pumps in water treatment plant, Version 01.0

B. Terms and definitions

Terms	Definitions
inverter	An apparatus to control the motor speed in line with
	different load demand
electricity consumption ratio	The ratio of actual electricity consumption to rated
(hereinafter referred to as "ECR")	electricity consumption
operational load	The ratio of actual water flow to rated water flow capacity
	of pump

C. Summary of the methodology

Items	Summary
GHG emission reduction	Introduction of inverter to constant-speed pumps for water
measures	distribution in water treatment plant leads to a reduction of
	electricity consumption by pumps and GHG emissions
	accordingly.
Calculation of reference	Reference emissions are calculated with the monitored
emissions	electricity consumption of project pumps, the ratio of ECR of
	reference and project pumps, and the CO ₂ emission factor for
	consumed electricity.
Calculation of project	Project emissions are calculated with the monitored electricity
emissions	consumption of project pumps and the CO ₂ emission factor for
	consumed electricity.
Monitoring parameters	Electricity consumption of project pumps

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Inverter(s) is installed to the existing constant-speed pump(s) for water
	distribution in water treatment plant.
Criterion 2	The value of ECR of project pump is always smaller than that of reference pump
	at the same operational load except when the operational load is equal to one (1),
	which is demonstrated by equations fixed ex ante or may be demonstrated by
	equations ex post at the time of the first verification.

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types
Electricity consumption by reference pumps	CO_2
Project emissions	
Emission sources	GHG types
Electricity consumption by project pumps	CO ₂

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with the monitored electricity consumption of project pumps, the ratio of ECR of reference and project pumps, and the CO_2 emission factor for consumed electricity.

Net emission reductions are ensured by setting an equation to calculate ECR of reference pump in a conservative manner in this methodology.

- 1) Electricity consumption and water flow of existing constant-speed pumps are actually measured at major water treatment plants in Cambodia.
- 2) Monitored data shows that relatively new pumps consume less electricity than old ones at the same operational load.
- 3) Data of new pumps are selected to determine an approximation formula for ECR of reference pump.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \left(EC_{PJ,i,p} \times \frac{ECR_{RE,i,p}}{ECR_{PJ,i,p}} \right) \times EF_{elec}$$

Where

mere	
RE_p	Reference emissions during the period p [t-CO ₂ /p]
$EC_{PJ,i,p}$	Electricity consumption by project pump i during the period p [MWh/p]
$ECR_{RE,i,p}$	ECR of reference pump i during the period p [dimensionless]
ECR _{PJ,i,p}	ECR of project pump <i>i</i> during the period <i>p</i> [dimensionless]
EF _{elec}	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
i	Identification number of pumps [dimensionless]

 $ECR_{RE,i,p}$ and $ECR_{PJ,i,p}$ are determined by the following processes.

Step 1: A cubic equation to calculate $ECR_{PJ,i,p}$ for each project pump is fixed *ex ante* or *ex post* with monitored data of the project pump.

Coefficient of determination (\mathbf{R}^2) of the equation exceeds 0.95.

Monitored data is adjusted so that the value of ECR is one (1) when the operation load factor is one (1) in the cubic equation.

Step 2: ECR of project pump *i* for the monitoring period $(ECR_{PJ,i,p})$ is calculated from monitored electricity consumption divided by a rated electricity consumption of the pump which is derived by multiplying a rated input power by monitored hours.

When project pump is stopped due to maintenance, breakdown and so on, those hours are excluded from the monitored hours.

Step 3: An average operational load of project pump for the monitoring period (x) is derived by applying the value of ECR calculated in Step 2 to the equation fixed in Step 1.

Step 4: $ECR_{RE,i,p}$ is calculated by applying the average operational load of project pump derived in Step 3 to the following equation.

$$ECR_{RE,i,p} = -0.6703x^3 + 0.8734x^2 + 0.3442x + 0.4484$$

Where

X

Operational load of project pump [dimensionless]

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

Where

PE_p	Project emissions during the period p [t-CO ₂ /p]
$EC_{PJ,i,p}$	Electricity consumption by project pump i during the period p [MWh/p]
EF _{elec}	CO2 emission factor for consumed electricity [tCO2/MWh]
i	Identification number of pumps [dimensionless]

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$	
Where		
PE_p	Emission reductions during the period p [t-CO ₂ /p]	
RE_p	Reference emissions during the period p [t-CO ₂ /p]	
PE_p	Project emissions during the period p [t-CO ₂ /p]	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$ECR_{PJ,i,p}$	Electricity consumption ratio of project pump	Monitored data or test data of
	<i>i</i> during the period <i>p</i>	pump manufacturer
	A cubic equation to calculate $ECR_{PJ,i,p}$ for	
	each project pump is fixed ex ante with	
	monitored data of the project pump.	
	Coefficient of determination (R^2) of the	
	equation exceeds 0.95.	
	A cubic equation is adjusted so that the	
	electricity consumption ratio is one (1) when	
	the operation load factor is one (1).	

	* $ECR_{PJ,i,p}$ may be fixed <i>ex post</i> .	
EF _{elec}	CO ₂ emission factor for consumed electricity	[Grid electricity]
		The most recent published
	When project pump consumes only grid	value by the Ministry of
	electricity or captive electricity, the project	Environment of Cambodia at
	participant applies the CO2 emission factor	the time of validation.
	respectively.	
		[Captive electricity]
	When project pump may consume both grid	For the option (a)
	and captive electricity, the project participant	Specification of the captive
	applies the CO_2 emission factor with lower	power generation system
	value.	provided by the manufacturer
		$(\eta_{elec,CG} [\%]).$
	In case the captive electricity is generated by	CO ₂ emission factor of the
	renewable energy source(s) and the amount of	fossil fuel type used in the
	the captive electricity generated by the	captive power generation
	renewable source(s) estimated from its	system (EF _{fuel,CG} [tCO ₂ /GJ])
	generation capacities is equal to or less than	
	half of the total electricity consumption at the	For the option (b)
	project site, the portion of electricity generated	Generated and supplied
	by the renewable source(s) may be neglected	electricity by the captive power
	in the calculation of the captive CO ₂ emission	generation system (EG _{PJ,CG,p}
	factor. If the amount of captive electricity	[MWh/p]).
	generated by renewable source(s) is more than	Fuel amount consumed by the
	half, the captive CO ₂ emission factor is	captive power generation
	determined by the following option (b) of "(2)	system (FC _{PJ,CG,p} [mass or
	For captive electricity" using the total amount	volume/p]).
	of captive electricity generated by both fossil	Net calorific value (NCV _{fuel,CG}
	fuel and renewable sources for EG _{PJ,CG,p}	[GJ/mass or volume]) and CO ₂
		emission factor (EF _{fuel,CG}
	$[CO_2 \text{ emission factor}]$	[tCO ₂ /GJ]) of the fuel
	(1) For grid electricity	consumed by the captive power
	ine most recent value available from the	generation system in order of
	source stated in this table at the time of	preterence:
	vanuation is applied.	1) values provided by the fuel
		supplier;
	(2) For captive electricity	2) measurement by the project

Option (a) Calculated from its power generation efficiency ($\eta_{elec,CG}$ [%]) obtained from manufacturer's specification The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$\text{EF}_{\text{elec}} = 3.6 \times \frac{100}{\eta_{\text{elec,CG}}} \times \text{EF}_{\text{fuel,CG}}$$

Option (b) Calculated from measured data The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,CG,p}$) and the amount of electricity generated ($EG_{PJ,CG,p}$) during the monitoring period *p* is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

 $EF_{elec} = FC_{PJ,CG,p} \times NCV_{fuel,CG} \times EF_{fuel,CG}$

Where:

NCV_{fuel,CG}: Net calorific value of fuel consumed by the captive power generation system [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

• The system is non-renewable generation system

participants;
3) regional or national default values;
4) IPCC default values
provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC
Guidelines on National GHG
Inventories. Lower value is applied.

[Captive electricity with diesel fuel] CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas]

2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas. CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation systems version02.0" for the default efficiency for off-grid power plants.

• Electricity generation capacity of the		
system is less than or equal to 15 MW		
	1	
fuel type	Diesel fuel	Natural gas
EF _{elec}	0.8^{*1}	0.46 ^{*2}
*1 The most recent value at the time of		
validation is applied.		
*2 The value is calculated with the equation in		
the option (a) above. The lower value of		
default effective CO ₂ emission factor for		
natural gas (0.0543 tCO ₂ /GJ), and the most		
efficient value of default efficiency for off-grid		
gas turbine systems (42%) are applied.		