JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Kenya	
Name of the methodology proponents	Pacific Consultants Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	1. Energy industries (renewable-/non-renewable	
Methodology applies	sources)	
Title of the proposed methodology, and	Installation of Run-of-river Small Hydropower	
version number	Generation Plant, Version 01.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	⊠Additional information	
	Additional information to the Proposed	
	Methodology "Installation of Run-of-river Small	
	Hydropower Generation Plant"	
Date of completion	15/02/2017	

History of the proposed methodology

Version	Date	Contents revised
01.0	15/02/2017	First Edition

A. Title of the methodology

Installation of Run-of-river Small Hydropower Generation Plant, Version 01.0

B. Terms and definitions

Terms	Definitions	
Small hydropower plant	A small hydropower plant is a hydropower plant with an	
	installed capacity of up to 10 MW ¹ .	
Run-of-river hydropower plant	A run-of-river hydropower plant is a type of hydroelectric	
	generation which does not have a dam ² .	

C. Summary of the methodology

Items	Summary
GHG emission reduction	Displacement of electricity using fossil fuel as a power source
measures	by installation and operation of a small hydropower plant.
Calculation of reference	The reference emissions are calculated on the basis of the net
emissions	power output of the small hydropower plant which means the
	gross energy generation by the project small hydropower plant
	minus the auxiliary/station electricity consumption, multiplied
	by the conservative emission factor.
Calculation of project	The project emissions are the emissions from the small
emissions	hydropower plant, which are assumed to be zero.
Monitoring parameters	The quantity of electricity generated by the project small
	hydropower plant.

D. Eligibility criteria

¹ If the installed capacity of the project hydropower plant is equal to or less than 30 kW and not connected to national electricity grid on the day of validation, the approved methodology KE_AM001 "Electrification of communities using Micro hydropower generation" may be applied.

A dam is defined as a structure built across a river with a height greater than 15m or more from its foundation.

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1 The project installs a run-of-river small hydropower plant.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Generation of electricity using fossil fuel as power source	CO_2	
Project emissions		
Emission sources	GHG types	
Generation of electricity from small hydropower plant	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

In order to identify the reference emission factor simplistically and secure net emission reductions, this methodology applies the lowest emission factor of diesel power generation. The most efficient diesel generator in the world has a generation efficiency close to 49%. A power generation efficiency of 49% translates into an emission factor of 0.533 tCO₂/MWh. This value is lower than the lowest standardized grid emission factor in 2014, which is 0.5793 tCO₂/MWh as the build margin calculated at that time addressed in the report published by the National Environment Management Authority of Kenya (NEMA 2014). This will ensure net emission reductions.

F.2. Calculation of reference emissions

 $RE_p = EG_p \times EF_{RE}$

RE_p : Reference emissions during period p [tCO₂/p]

 EG_p : Quantity of electricity generated by project small hydropower plant during period p

[MWh/p]

 EF_{RE} : Reference CO_2 emission factor [t CO_2 /MWh]

G. Calculation of project emissions

$$PE_p=0$$

PE_p : Project emissions during period p [tCO₂/p]

H. Calculation of emissions reductions

$$\begin{split} ER_p &= RE_p & \text{-} & PE_p \\ &= RE_p & \end{split}$$

 $\operatorname{ER}_{\operatorname{p}}$: Emission reductions during period p [tCO₂/p] $\operatorname{RE}_{\operatorname{p}}$: Reference emissions during period p [tCO₂/p] $\operatorname{PE}_{\operatorname{p}}$: Project emissions during period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{RE}	The reference CO ₂ emission factor	Additional information.
		The default value is revised if
	The default value for EF_{RE} is set to be 0.533	deemed necessary by the JC.
	(tCO_2/MWh) .	
	*The efficiency of the most efficient diesel	
	engine is close to but below 49%.	