Joint Crediting Mechanism Approved Methodology TH_AM002 "Energy Saving by Introduction of Multi-stage Oil-Free Air Compressor"

A. Title of the methodology

Energy Saving by Introduction of Multi-stage Oil-Free Air Compressor, Version 1.0

B. Terms and definitions

Terms	Definitions	
Multi-stage oil-free air	A device with more than one compression stage without	
compressor	using lubricating oil to compress air, nitrogen or inert gases	
	to make the pressure of gas higher than that of the inlet.	
Specific conditions	The specific conditions for this methodology are defined as	
	below, following ISO 1217:2009.	
	Ambient temperature = 20 degrees Celsius,	
	Ambient pressure = 0 MPa (Gauge pressure),	
	Relative humidity $= 0\%$,	
	Cooling water/air = 20 degrees Celsius,	
	Effective working pressure at discharge value $= 0.7$ MPa	
	(Gauge pressure).	
Free air delivery (FAD)	The actual quantity of compressed air converted to the inlet	
	conditions of the compressor. The unit is m ³ /min.	
Periodical check	A periodical investigation of air compressor conducted by	
	manufacturer or agent who is authorized by the manufacturer,	
	in order to maintain air compressor performance.	
Specific power (SP)	An indicator of efficiency of air compressor, calculated with	
	electric motor power (nominal output power) [kW] and free	
	air delivery [m ³ /min]	
	$SP = \frac{Motor power [kW]}{FAD [m^3/min]}$	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims at saving	
measures	energy by introducing multi-stage oil-free air compressor in	
	manufacturing process of semiconductors.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	air compressor, calculated with power consumption of project	
	air compressor, specific power (SP) of reference/project air	
	compressors and CO ₂ emission factor for electricity consumed.	
Calculation of project	Project emissions are GHG emissions from using project air	
emissions	compressor, calculated with power consumption of project air	
	compressor and CO ₂ emission factor for electricity consumed.	
Monitoring parameters	• Power consumption of project air compressor	
	• The amount of fuel consumed and the amount of electricity	
	generated by captive power, where applicable.	

D. Eligibility criteria		
This methodology is applicable to projects that satisfy all of the following criteria.		
Criterion 1	1 Project air compressor is a non-inverter type multi-stage oil-free air compressor	
	with an electric motor power of 55kW, 75kW, 110kW, 132kW, 145kW, 160kW,	
	or 200kW installed in manufacturing process of semiconductors.	
Criterion 2	Periodical check is planned more than one (1) time annually.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by air compressor	CO ₂	
Project emissions		
Emission sources GHG type		
Electricity consumption by air compressor	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project air compressor, specific power (SP) for reference/project air compressors, and CO₂ emission factor for electricity consumed.

SP of reference air compressor is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The most efficient value is selected for each motor power of air compressors from the collected SP values available in Thai market and determined as the reference SP.
- 2. The value of SP is defined as $SP_{RE,sc,i}$ described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (SP_{RE,sc,i} \div SP_{PJ,sc,i}) \times EF_{elec} \}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{Pl,i,p}$: Power consumption of project air compressor *i* during the period *p* [MWh/p]

 $SP_{PI,sc,i}$: SP of project air compressor *i* calculated under the specific conditions [kW·min/m³]

 $SP_{RE.sc.i}$: SP of reference air compressor *i* under the specific conditions [kW·min/m³]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project air compressor *i* during the period *p* [MWh/p]

 EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$
: Emission reductions during the period p [tCO ₂ /p]

 RE_p : Reference emissions during the period *p* [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

ER_p

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
When project air compressor consumes only		The most recent value available
	grid electricity or captive electricity, the	at the time of validation is
	project participant applies the CO ₂ emission	applied and fixed for the
	factor respectively.	monitoring period thereafter.
		The data is sourced from "Grid
	When project air compressor may consume	Emission Factor (GEF) of
	both grid electricity and captive electricity, the	Thailand", endorsed by
	project participant applies the CO ₂ emission	Thailand Greenhouse Gas
	factor with lower value.	Management Organization
		unless otherwise instructed by
	[CO ₂ emission factor]	the Joint Committee.
	For grid electricity: The most recent value	
	available from the source stated in this table at	[Captive electricity]
	the time of validation	For the option a)
		CDM approved small scale
	For captive electricity, it is determined based	methodology: AMS-I.A
	on the following options:	
		For the option b)
	a) 0.8*	Specification of the captive
	*The most recent value available from CDM	power generation system
	approved small scale methodology AMS-I.A	provided by the manufacturer
	at the time of validation is applied.	$(\eta_{elec} [\%]).$
		CO ₂ emission factor of the
	b) Calculated from its power generation	fossil fuel type used in the
	efficiency $(\eta_{elec} [\%])$ obtained from	captive power generation
	manufacturer's specification	system (EF _{fuel} [tCO ₂ /GJ])

	The power generation efficiency based on	
	lower heating value (LHV) of the captive	For the option c)
	power generation system from the	Generated and supplied
	manufacturer's specification is applied;	electricity by the captive power
		generation system (EG _{PJ,p}
	$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	[MWh/p]).
		Fuel amount consumed by the
	c) Calculated from measured data	captive power generation
	The power generation efficiency calculated	l system (FC _{PJ,p} [mass or
	from monitored data of the amount of fuel	weight/p]).
	input for power generation $(FC_{PJ,p})$ and the	e Net calorific value (NCV _{fuel}
	amount of electricity generated $(EG_{PJ,p})$	[GJ/mass or weight]) and CO ₂
	during the monitoring period p is applied.	The emission factor of the fuel
	measurement is conducted with the monito	ring $(EF_{fuel} [tCO_2/GJ])$ in order of
	equipment to which calibration certificate i	s preference:
	issued by an entity accredited under	1) values provided by the fuel
	national/international standards;	supplier;
	$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG}$	1 2) measurement by the project
	$EF_{elec} = FCpJ_p \wedge NCVfuel \wedge EFfuel \wedge EC$	<i>PJ,p</i> participants;
	Where:	3) regional or national default
	NCV_{fuel} : Net calorific value of consumed	values;
	fuel [GJ/mass or weight]	4) IPCC default values
		provided in tables 1.2 and 1.4
		of Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National GHG
		Inventories. Lower value is
		applied.
SP _{RE,sc,i}	The SP of the reference air compressor a	for Specifications of project air
	each motor power is set as a default value	ie in compressor <i>i</i> prepared for the
	this methodology as shown in the table bel	ow. quotation or factory acceptance
		test data by manufacturer.
	Motor Power [kW] Reference SP	
	55 5.73	The default SP value is derived
	75 6.00	from the result of survey on SP
	110 5.6'	of non-inverter oil-free air
	132 5.84	
	145 6.14	a manufacturers that have high

	160 5.65	market share in Thailand.
	200 5.49	-
		The $SP_{RE,sc,i}$ is revised if
	It is noted that the SP value is calculated und	der necessary from survey result
	the specific conditions	which is conducted by JC or
		project participants every three
		years.
SP _{PJ,i}	SP of project air compressor <i>i</i> under the	Specifications of project air
	project specific conditions.	compressor <i>i</i> prepared for the
		quotation or factory acceptance
		test data by manufacturer.
SP _{PJ,sc,i}	SP of project air compressor <i>i</i> under the	Specifications of project air
	specific conditions is calculated by the	compressor <i>i</i> prepared for the
	following equation:	quotation or factory acceptance
		test data by manufacturer.
	$SP_{PJ,SC,i} = SP_{PJ,i} \times \frac{T_{s,PJ,SC,i}}{T_{s,PJ,i}} \times \left[\left(\frac{P_{d,PJ,SC,i}}{P_{s,PJ,SC,i}} \right)^{\frac{k-1}{m_i k}} - 1 \right]$	
	$\div \left[\left(\frac{P_{d,PJ,i} + 0.101}{P_{s,PJ,i}} \right)^{\frac{k-1}{m_i k}} - 1 \right]$	
	<i>k</i> : Heat capacity ratio (Dried Air) = 1.4	
	m_i : Number of compression stages of project air	
	compressor i	
	$P_{s,PJ,i}$: Suction pressure of project air compressor <i>i</i> un	der
	the project specific conditions [MPa(abs)] (Default va	lue
	is set at atmospheric pressure = 0.101[MPa(abs)])	
	$P_{s,PJ,sc,i}$: Suction pressure of project air compressor <i>i</i>	
	under the specific conditions [MPa(abs)] (Default value	ue
	is set at atmospheric pressure = 0.101[MPa(abs)])	
	$T_{s,PJ,i}$: Suction temperature of project air compressor i	i
	under the project specific conditions [K] (Value from	the
	product catalogue or manufacturer's specification)	
	$T_{s,PJ,sc,i}$: Suction temperature of project air compresso	or i
	under the specific conditions [K] (Default value is set	at
	293.0[K])	
	$P_{d,PJ,i}$: Discharge pressure of project air compressor <i>i</i>	
	under the project specific conditions [MPa(Gauge	

pressure)] (Value from the product catalogue or	
manufacturer's specification)	
$P_{d,PJ,sc,i}$: Discharge pressure of project air compressor <i>i</i>	
under the specific conditions [MPa(abs)] (=	
0.101[MPa(abs)] + 0.7 [MPa(Gauge pressure)] =	
0.801[MPa(abs)])	

History of the document

Version	Date	Contents revised
1.0	23 August 2016	Decision by the Joint Committee. Initial approval.