Joint Crediting Mechanism Approved Methodology BD_AM004 "Installation of energy-saving conductors for transmission lines in the Bangladesh grid"

A. Title of the methodology

Installation of energy-saving conductors for transmission lines in the Bangladesh grid, Version 01.0

B. Terms and definitions

Terms	Definitions
ACSR (Aluminum Conductor	ACSR is a conductor whose structure consists of the steel
Steel Reinforced), (reference	center strand(s), covered by outer strands of aluminum.
conductors)	
HTLS (High-Temperature Low-	HTLS are conductors which have less sag at high
Sag conductors), (project	temperatures, higher capacity and less energy loss with
conductors)	cores made of steel alloys, composite-reinforced metal, or
	carbon fiber composite material compared to conventional
	ACSR.

C. Summary of the methodology

Items	Summary
GHG emission reduction	Reduction of transmission loss by introduction of HTLS.
measures	
Calculation of reference	Calculation of GHG emissions due to transmission loss in
emissions	ACSR, based on the parameters derived from ASTM
	International Standard B232 (Standard Specification for
	ACSR).
Calculation of project	GHG emissions due to transmission loss in HTLS, based on
emissions	monitored transmission loss.
Monitoring parameters	Power sent from the point of origin/supply to the transmission
	line, power received at the point of end/receipt of the
	transmission line.

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

	The transmission line constitutes of a single or double circuit(s) directly
Criterion 1	connecting a substation and another substation within the country with no
	branching in between, and does not constitute a part of a loop.
	The type of conductor used by the project is the family of HTLS, which
Criterion 2	includes heat-resistant aluminum alloys or materials whose high temperatures
	have been mitigated by reinforced conductors (see Section B).

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Transmission loss in reference conductors	CO_2	
Project emissions		
Emission sources	GHG types	
Transmission loss in project conductors	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions (RE_p) are calculated by multiplying transmission loss in ACSR ($LOSS_{RF,L,p}$) by the emission factor of the grid (EF_{Grid}). The $LOSS_{RF,L,p}$ is derived by multiplying the project transmission loss in HTLS ($LOSS_{PJ,L,p}$) by the ratio of direct current (DC) resistance between ACSR and HTLS.

To ensure conservativeness in establishing the reference emissions to achieve net emission reductions, the following assumptions are applied:

- The ratio of DC resistance between ACSR and HTLS, instead of the ratio of alternative current (AC) resistance, is used because the ratio of DC resistance is smaller than that of AC resistance under the standard condition.
- The same temperature at 20 deg. C. is assumed for the ACSR and HTLS to calculate the ratio of DC resistance between ACSR and HTLS. This ratio of direct current resistance derived at 20 deg. C. is smaller than the ratio at the actual temperature (the actual temperature of ACSR conductors would be higher than that of HTLS at the same

ambient temperature due to higher resistance of ACSR).

- The default value of DC resistance of ACSR (reference transmission line, Rdc_{RF,L}) is set by discounting by 2% the direct current resistance of ACSR code in ASTM International Standard B232 for the same overall diameter used in Bangladesh. The diameter of each strand of the reference conductor is assumed 1% larger than its specification, which is the maximum allowable tolerance of major international standard such as the International Electrotechnical Commission (IEC), resulting in 2% increase in cross-sectional area and thus 2% reduction in resistance (the value of resistance is inversely proportional to that of the cross-sectional area).

F.2. Calculation of reference emissions

Reference emissions are calculated by the following equation.

$$RE_p = \sum_{L} (LOSS_{RF,L,p} \times EF_{Grid})$$
(1)

$$LOSS_{RE,L,p} = LOSS_{PJ,L,p} \times \frac{R_{DC_RE,L}}{R_{DC_PLL}}$$
(2)

Where

 $R_{DC_RF,L}$

 RE_p = Reference emissions during the period p [tCO₂/p]

Reference transmission loss at transmission line L during the period p

 $LOSS_{RF,L,p} = [MWh/p]$

 EF_{Grid} = CO_2 emission factor of the grid [tCO₂/MWh]

LOSS_{PJ,L,p} = Project transmission loss at transmission line L during the period p

[MWh/p]

Direct current resistance of transmission line L using reference ACSR

 $(@20 \text{ deg. C}) [\Omega/\text{km}]$

Direct current resistance of transmission line L using HTLS (@20 deg. C)

 $R_{DC_PJ,L} = [\Omega/km]$

G. Calculation of project emissions

Project emissions are calculated by multiplying transmission loss in the project (LOSS_{PJ,L,p}) by the CO_2 emission factor of the grid (EF_{Grid}).

$$PE_{p} = \sum_{L} (LOSS_{PJ,L,p} \times EF_{Grid})$$
(3)

H. Calculation of emissions reductions

Emission reductions are calculated by the following equation. $ER_{p} = RE_{p} - PE_{p}$ (5)

Where $ER_{p} = Emission reduction during the period p [tCO₂/p]$ $RE_{p} = Reference emission during the period p [tCO₂/p]$ $PE_{p} = Project emission during the period p [tCO₂/p]$

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
R DC_PJ,L	Direct current resistance of transmission line L	Measured according to IEC
	using HTLS (@20 deg. C) [Ω/km]	60468 (Method of
		measurement of resistivity of
		metallic materials).
R DC_RF,,L	Direct current resistance of transmission Line L	Based on ASTM
	using reference ACSR (@20 deg. C) [Ω/km]	International Standard B232
	Reference value is calculated by discounting 2%	
	of the direct current resistance of a type of	
	ACSR of which specified in ASTM International	
	Standard B232 which has same overall diameter	
	as one of project HTLS.	
	Example of default R DC_RE,L Value:	

	ASCR Code Flamingo Mallard Cardinal	Overall diameter (mm) 25.34 28.96 30.42	R _{DC_RF,L} (Direct current resistance @20 deg. C) (Ω/km) 0.0838 0.0702 0.0584	
EF _{Grid}	project scen	ario, the mo	both reference and st recent emission factor $0_2/MWh$] available at the	The most recent value available at the time of validation is applied and fixed for the monitoring period thereafter. The data is sourced from "Grid Emission Factor (GEF) of Bangladesh", endorsed by National CDM Committee unless otherwise instructed by the Joint Committee.

History of the document

Version	Date	Contents revised
01.0	4 January 2023	Electronic decision by the Joint Committee
		Initial approval.