JCM Project Design Document Form

A. Project description

A.1. Title and reference number of the project idea note (PIN) of the JCM project

Title	Introduction of Gas Co-generation System and Absorption Chiller to Motor Parts Factory
PIN reference number	N/A

A.2. General description of project and applied technologies and/or measures

The proposed JCM project aims to reduce emissions of greenhouse gas (GHG) by introducing co-generation system (hereinafter referred to as CGS) and the absorption chiller in the motor parts factory of PT. DENSO Indonesia located in Bekasi, West Java Province.

Electricity generated by the CGS substitutes a part of grid electricity consumed in the project site. The absorption chiller utilizing heating energy generated by the CGS saves energy for cooling energy demand. Installation of the CGS and the absorption chiller leads to improvement of total energy efficiency and in turn GHG emission reductions.

The gas engine introduced in the project is manufactured by JENBACHER and its model number is "JMS612GS-N.L.". The absorption chiller introduced in the project is manufactured by EBARA and its model number is "RFHA066".

A.3. Location of project, including coordinates

Country Republic of Indonesia	
Region/State/Province etc.:	West Java Province
City/Town/Community etc:	Bekasi
Latitude, longitude	6°19'52.8"S 107°04'25.3"E

A.4. Name of project participants

The Republic of Indonesia	PT. DENSO Indonesia
Japan	DENSO CORPORATION

A.5. Duration

Starting date of project operation	01/10/2019	
Expected operational lifetime of project	9 years	
Type and duration of crediting period	Fixed crediting period, 9 years	

Starting date of crediting period (input the information	N/A
when requesting a renewal of crediting period)	

A.6. Contribution from Japan

The proposed project was partially supported by the Ministry of the Environment, Japan (MOEJ) through the financing programme for JCM model projects, which provided financial support of less than half of the initial investment for the projects in order to acquire JCM credits. Furthermore, implementation of the proposed project promotes transfer of low carbon technologies in Indonesia. The proposed JCM project also provides local staff with a technical training for maintenance skill.

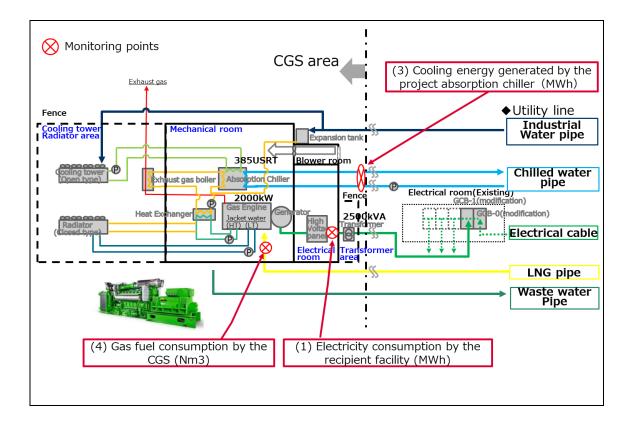
B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)

Selected approved methodology No.	ID_AM023
Version number	Ver1.1

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

Eligibility	Descriptions specified in the	Project information
criteria	methodology	
Criterion 1	A CGS, whose electricity is generated by a gas engine(s), with absorption chiller(s) utilizing waste heat from CGS is installed and supplies electricity, heating energy and cooling energy (e.g. steam, hot water and chilled water) to recipient facility(ies).	A gas engine CGS manufactured by JENBACHER (model number is "JMS612GS-N.L.") and an absorption chiller manufactured by EBARA (model number is "RFHA066") are installed to supply electricity and heating energy and cooling energy to recipient facilities. The project absorption chiller utilizes waste heat from the project CGS.
Criterion 2	Electricity and heating energy, each of which is generated in separate systems, is supplied to and consumed by recipient facility(ies) before the installation of a project CGS.	Grid electricity and heating energy generated by a boiler are supplied to and consumed by recipient facilities before installation of the project CGS.
Criterion 3	In the case of replacing the existing chiller with the project chiller, a plan for prevention of releasing refrigerant used in the existing chiller to the air (e.g. re-use of the equipment) is prepared. Execution of this plan is checked at the time of	The existing chiller is NOT replaced with the project chiller.


verification, in order to confirm that	
refrigerant used for the existing one	
replaced by the project is prevented	
from being released to the air.	
In the case that the existing chiller	
is NOT replaced with the project	
chiller, this criterion is not applied.	

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM project

Reference emissions		
Emission sources	GHG type	
Electricity consumption in recipient facility(ies)	CO ₂	
Fossil fuel consumption for production of heating energy consumed in recipient facility(ies)	CO ₂	
Electricity consumption by reference chiller	CO_2	
Project emissions		
Emission sources	GHG type	
Gas fuel consumption by CGS	CO ₂	
Electricity consumption by project chiller	CO_2	
Gas fuel consumption by project chiller	CO_2	

C.2. Figure of all emiss	ion sources and monitoring points releva	ant to the JCM project

C.3. Estimated emissions reductions in each year

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO ₂ e)	Emissions (tCO ₂ e)	Reductions (tCO ₂ e)
2013			
2014			
2015			
2016			
2017			
2018			
2019	2,279.3	1,319.3	960
2020	8,435.7	4,888.5	3,547
2021	9,590.2	5,513.6	4,076
2022	9,441.0	5,468.8	3,972
2023	9,108.8	5,478.3	3,630
2024	9,846.5	5,744.7	4,101
2025	9,117.3	5,277.0	3,840
2026	9,117.3	5,277.0	3,840
2027	9,117.3	5,277.0	3,840

2028	6,819.2	3,946.9	2,872
2029			
2030			
Total (tCO ₂ e)			34,678

Note:

The estimated emission reductions in each year are rounded down after the decimal point.

D. Environmental impact assessment			
Legal requirement of environmental impact assessment for	No		
the proposed project			

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

Local stakeholder consultation has been conducted online, on 13th October 2020.

The list of attendees to the meeting has been determined through the consultation with the JC secretariat of Indonesian side.

The overview and participants of the meeting are as follows.

Date: 13th October 2020 Place: web conference

Agenda

- 1. Opening remarks
- 2. Outline of PT. DENSO Indonesia
- 3. Summary of the project and technology introduced (including the video that shows the equipment installed for this project)
- 4. Questions and answers
- 5. Closing

Participants:

[Local stakeholders]

No.	Organization	Position	
1	JCM Secretariat	Head of Secretariat	
2	JCM Secretariat	Secretariat	

3	JCM Secretariat	Secretariat
4	P.T. Yutaka Manufacturing Indonesia	Energy Auditor
5	P.T. Yutaka Manufacturing Indonesia	Energy Auditor

[Project participants]

PT. DENSO Indonesia

A summary of the comments received, and consideration of those comments are listed in Section E.2. below.

E.2. Summary of comments received and their consideration

Stakeholders		Comments received		onsideration of comments received
Head	1.	Currently do you have	1.	We have already 3 dedicated
of Secretariat,		additional manpower for		manpower to fully operate CGS.
JCM Secretariat		operation of CGS?		We have already trained them as
	2.	Do you conduct special training		gas engine generator operators.
		for CGS operator?	3.	Training was conducted at
	3.	If training for CGS operator has		Certification Foundation - "Balai
		already been conducted, how		Sertifikasi" in Bandung, West
		and how long has it been		Java.
		conducted? And who was the	4.	We have already jointed with
		trainer?		Astra Green Energy Award, and
	4.	Have you explained this activity		held the Co-Generation system
		to Astra group?		explanation at 2019, and got the
				1st winner.
			No	further action is needed.
Energy Auditor,	1.	What is the working mechanism	1.	ABS chiller uses chemical liquid
Yutaka		of ABS Chiller?		Lithium bromate (this working
Manufacturing	2.	How hot is the water for Chiller		principal looks like that of
Indonesia		input?		refrigerant gas). The system
				works when pressure decreases
				and automatically the
				temperature also goes down and
				the liquid turns to gas. The
				function of hot water is to turn
				back the low temperature gas to

	2.	liquid. The temperature of the input hot
	2.	water is between 80-90°C.
	No	further action is needed.

F. References

N/A

Reference lists to support descriptions in the PDD, if any.

Annex			
N/A			

Revision history of PDD			
Version	Date	Contents revised	
1.0	28/10/2025	First Edition	