JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia		
Name of the methodology proponents	FAST RETAILING CO., LTD.		
submitting this form			
Sectoral scope(s) to which the Proposed	03. Energy Demand		
Methodology applies			
Title of the proposed methodology, and	Introduction of energy efficient and high color		
version number	rendering LED downlight/spotlight, Version		
	01.0		
List of documents to be attached to this	☐The attached draft JCM-PDD:		
form (please check):	⊠Additional information		
	1) Additional information on reference		
	emissions		
Date of completion	06/08/2019		

History of the proposed methodology

Version	Date	Contents revised
01.0	06/08/2019	First edition

A. Title of the methodology

Introduction of energy efficient and high color rendering LED downlight/spotlight, Version 01.0

B. Terms and definitions

Terms	Definitions		
Luminous efficiency	The capacity of light flux per watt, which is calculated with		
	the formula below.		
	Luminous efficiency [lm/W] = Luminous flux [lm] ÷ Rated		
	power consumption [W]		
Color rendering index	An index used to quantitatively measure light source's		
	ability to render the true colors of the object compared to a		
	natural light source. The index is measured from 0 to 100,		
	with a perfect 100 indicating that colors under the light		
	source appear the same as they would under natural		
	sunlight.		
Downlight/Spotlight	Downlight is downward lighting directly embedded in		
	ceiling. Spotlight is downward lighting attached to ceiling-		
	mounted wiring ducts.		

C. Summary of the methodology

Items	Summary		
GHG emission reduction	This methodology applies to the project that aims for saving		
measures	energy by introducing Light Emitting Diode (LED)		
	downlight/spotlight in indoor facilities where high		
	performance in color rendering property is required.		
Calculation of reference	Reference emissions are GHG emissions from using reference		
emissions	lighting, calculated with power consumption of project		
	lighting, ratio of luminous efficiency of project/reference		
	lighting and CO ₂ emission factor for consumed electricity.		
Calculation of project	Project emissions are GHG emissions from using project		

emissions	lighting, calculated with power consumption of project	
	lighting and CO ₂ emission factor for consumed electricity.	
Monitoring parameters	Total power consumption by project lighting and/or	
	opening days of facilities where project lighting is	
	installed	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	LED lighting is installed in indoor facilities.					
Criterion 2	The installed LED lighting is a downlight or spotlight type LED whose color					
	rendering index is equal to or higher than 85, and luminous efficiency is equal					
	to or higher than the corresponding threshold value set in the table below.					
	Rated power consumption [W]	0≤x<20	20≤x<40	40≤x<60	60≤x<80	x≥80
	Threshold luminous efficiency value [lm/W]	77.2	77.6	73.7	76.3	74.8

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference lighting	CO_2	
Project emissions		
Emission sources	GHG types	
Power consumption by project LED lighting	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with power consumption of project lighting, ratio of luminous efficiency of project/reference lighting and CO₂ emission factor for consumed

electricity.

The luminous efficiency of reference lighting is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- 1. In Indonesia, conventional High Intensity Discharge (HID) lighting is commonly chosen as lighting equipment in case that high performance in color rendering property is required. However, LED lighting, which is more efficient than HID lighting, is adopted as reference lighting in this methodology for conservativeness.
- 2. The average luminous efficiency value of LED downlight/spotlight commercially available in the global market is defined as η_{RE} in each rated power consumption range, as described in Section I.

F.2. Calculation of reference emissions

$$RE_p = \sum_{i,j} \left(EC_{PJ,i,j,p} \times \frac{\eta_{PJ,i,j}}{\eta_{RE,i,j}} \right) \times EF_{elec,i}$$

 RE_p : Reference emissions during the period p [tCO₂/p]

i : Identification number of the facility

j : Identification number of the group of project lighting of the same model

 $EC_{PJ.i.i.p}$: Power consumption of project lighting for group j in the facility i during the

period *p* [MWh/p]

 $\eta_{PJ,i,j}$: Luminous efficiency of project lighting for group j in the facility i [lm/W] $\eta_{RE,i,j}$: Luminous efficiency of reference lighting for group j in the facility i [lm/W] $EF_{elec,i}$: CO₂ emission factor for consumed electricity in the facility i [tCO₂/MWh]

 $EC_{PJ,i,j,p}$ is calculated as described below (Option 1 or 2).

- Option 1. If total power consumption by project lighting is measured for the facility i,

$$EC_{PJ,i,j,p} = EC_{PJ,i,total,p} imes rac{P_{PJ,i,j} imes n_{PJ,i,j}}{P_{PJ,i,total}}$$
 $P_{PJ,i,total} = \sum_{i} (P_{PJ,i,j} imes n_{PJ,i,j})$

 $\mathit{EC}_{\mathit{PJ},i,total,p}$: Total power consumption by project lighting in the facility i during the period

p [MWh/p]

 $P_{PJ,i,total}$: Total rated power consumption in the facility i [W]

 $P_{PJ,i,j}$: Rated power consumption per unit of project lighting for group j in the facility

i [W]

 $n_{PJ,i,j}$: Number of the unit of project lighting for group j in the facility i

- Option 2. Otherwise,

$$EC_{PJ,i,j,p} = P_{PJ,i,j} \times n_{PJ,i,j} \times 10^{-6} \times h_i \times D_{i,p}$$

 h_i : Daily opening hours of the facility i [hour/day]

 $D_{i,p}$: Opening days of the facility *i* during the period *p* [day/p]

G. Calculation of project emissions

$$PE_{p} = \sum_{i,j} EC_{PJ,i,j,p} \times EF_{elec,i}$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,j,p}$: Power consumption of project lighting for group j in the facility i during the

period *p* [MWh/p]

 $EF_{elec,i}$: CO₂ emission factor for consumed electricity in the facility i [tCO₂/MWh]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p]

 PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$EF_{elec,i}$	CO ₂ emission factor for consumed electricity	[Grid electricity]
	in the facility i [tCO ₂ /MWh].	Latest version of "Emission
		Factors of Electricity
	When project lighting consumes only grid	Interconnection Systems",
	electricity or captive electricity, the project	National Committee on
	participant applies the CO ₂ emission factor	Clean Development
	respectively.	Mechanism (Indonesian

	When project lighting n	DNA for CDM), based on	
	electricity and captive e	data obtained by Directorate	
	participant applies the C	General of Electricity,	
	with lower value.		Ministry of Energy and
			Mineral Resources,
	[CO ₂ emission factor]		Indonesia, unless otherwise
	For grid electricity: The	most recent value	instructed by the Joint
	available from the source	ce stated in this table at	Committee.
	the time of validation		
	For captive electricity:	0.8* [tCO ₂ /MWh]	[Captive electricity]
	*The most recent value	available from CDM	CDM approved small scale
	approved small scale m	ethodology AMS-I.A	methodology AMS-I.A
	at the time of validation	is applied.	
	Luminous efficiency of	project lighting for	Information prepared by
$\eta_{PJ,i,j}$	group j in the facility i .	[lm/W].	manufacturer (e.g. catalogs,
			specifications, or quotations)
	Luminous efficiency of	reference lighting for	Value derived from the result
	group j in the facility i [lm/W].	of survey. The default value
			should be revised, if
	The default values for reference luminous		necessary.
	efficiency are set in the	table below,	
	corresponding to the rat	ed power consumption	
	of project lighting.		
$\eta_{RE,i,j}$	Rated power	Reference luminous	
	consumption [W]	efficiency [lm/W]	
	$0 \le x < 20$	77.2	
	$20 \le x < 40$	77.6	
	$40 \le x < 60$	73.7	
	$60 \le x < 80$	76.3	
	x ≥ 80	74.8	
	Rated power consumption per unit of project		Information prepared by
$P_{PJ,i,j}$	lighting for group j in the facility i [W].		manufacturer (e.g. catalogs,
			specifications, or quotations)
$n_{PJ,i,j}$	Number of the unit of project lighting for		Information prepared by PP
	•		

	group j in the facility i .	(e.g. ledger, inventory or
		management record etc.)
	Daily opening hours of the facility <i>i</i> .	Information on the facility
		where project lighting is
h_i	When the facility has more than one pattern of	installed.
	opening hours, the shortest one is applied	
	conservatively.	