JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia		
Name of the methodology proponents	Institute for Global Environmental Strategies		
submitting this form			
Sectoral scope(s) to which the Proposed	1. Energy industries		
Methodology applies	(renewable-/non-renewable sources)		
Title of the proposed methodology, and	Electricity generation by installation of run-of-		
version number	river hydro power generation system(s) in		
	Indonesia, ver1.0		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	⊠Additional information		
	1) Explanatory note about additional		
	information on calculation the emission factors		
	of Indonesia for the JCM		
Date of completion	11/03/2019		

History of the proposed methodology

Version	Date	Contents revised
1.0	11/03/2019	Initial proposal

A. Title of the methodology

Electricity generation by installation of run-of-river hydro power generation system(s) in Indonesia, ver1.0

B. Terms and definitions

Terms			Definitions
Run-of-river	hydro	power	A method of power generation that uses water running in
generation			a river or a waterway directly into power generation unit.

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Displacement of grid electricity including national/regional and	
measures	isolated grids and/or captive electricity by installation with the	
	operation of hydro power generation system(s).	
Calculation of reference	Reference emissions are calculated on the basis of the	
emissions	electricity output of the hydro power generation system(s)	
	multiplied by either; 1) conservative emission factor of the grid,	
	or 2) conservative emission factor of the captive diesel power	
	generator based on the location of the projects.	
Calculation of project	Project emissions are the emissions from the hydro power	
emissions	generation system(s), which are assumed to be zero.	
Monitoring parameters	The quantity of the electricity generated by the project hydro	
	power generation system(s).	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1 The project newly installs a run-of-river hydro power generation system(s).

E. Emission Sources and GHG types

Reference emissions

Emission sources	GHG types
Consumption of grid electricity including national/regional and isolated	CO ₂
grids and/or captive electricity	
Project emissions	
Emission sources	GHG types
Generation of electricity from the hydro power generation system(s)	N/A

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The default emission factor is set in a conservative manner for the Indonesian regional grids. The default emission factor is calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run (LCMR) resources for each regional grid in Indonesia during the year 2013-2015 and refers to the conservative emission factor of each fossil fuel power plant in order to secure net emission reductions. The conservative emission factor of each plant are calculated as 0.795 tCO₂/MWh for coal-fired power plant and 0.320 tCO₂/MWh for gas-fired power plant based on the survey on heat efficiency of power plant in Indonesia. The emission factor for diesel power plant is calculated as 0.533 tCO₂/MWh based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case the hydro power generation plant in a proposed project activity is directly connected or connected via an internal grid not connecting to either an isolated grid or a captive power generator, to a national/regional grid (Case 1), the value of operating margin including LCMR resources, calculated using the best heat efficiency among currently operational plants in Indonesia for the emission factors of fossil fuel power plants, are applied. The emission factors to be applied are set as "Emission factor for Case 1 (tCO_2/MWh)" as shown in Section I. below.

In case the hydro power generation system(s) in a proposed project activity is connected to an internal grid connecting to both a national/regional, and an isolated grid and/or a captive power generator (Case 2), the lower values between emission factors of "Emission factor for Case 1 (tCO₂/MWh)" and the conservative emission factors of diesel-fired power plant of 0.533 tCO₂/MWh is applied. The emission factors to be applied are set as "Emission factor for Case 2 (tCO₂/MWh)" as shown in Section I. below.

In the case that the hydro power generation system(s) in a proposed project activity is only

connected to an internal grid connecting to an isolated grid and/or a captive power generator (Case 3), the emission factor of a diesel generator calculated by applying a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel generator is applied, which is set as $0.533 \text{ tCO}_2\text{/MWh}$.

The emission factors to be applied for each case are shown in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} (EG_{i,p} \times EF_{RE,i})$$

RE_p : Reference emissions during the period p [tCO₂/p]

 $\mathrm{EG}_{\mathrm{i,p}}$: Quantity of the electricity generated by the project hydro power generation system i

during the period *p* [MWh/p]

EF_{RE,i}: Reference CO₂ emission factor for the project hydro power generation system i

[tCO₂/MWh]

G. Calculation of project emissions

 $PE_p = 0$

 PE_p : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

 $\overline{ER_p} = RE_p - PE_p$ $= RE_p$

 ER_p : Emission reductions during the period p [tCO₂/p]

RE_p : Reference emissions during the period p [tCO₂/p]

PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data		Source
EF _{RE,i}	Reference CO ₂ emission factor for the project hy		Additional information
	power generation system i .		The default emission
			factor value is obtained
	The value for EF _{RE,i} is selected	from the emission	from a study of electricity
	factor based on the national/regio	nal grid (EF _{RE,grid}) or	systems in Indonesia and
	based on isolated grid and/or a of	captive diesel power	the most efficient diesel
	generator (EF _{RE,cap}) in the following	ing manner:	power generator (a
	In acce the building married consen	otion orotom(s) in s	default value of 49% heat
	In case the hydro power genera	•	efficiency is above the
	proposed project activity is dir	•	value of the world's
	connected via an internal grid not	•	leading diesel generator).
	an isolated grid or a captive po		The default value is
	national/regional grid (Case 1)	, EF _{RE,grid} is set as	revised if deemed
	follows:		necessary by the JC.
	Jamali grid Sumatra grid Batam – Bintan grid Tanjung Balai Karimun, Tanjung Batu, Kelong, Ladan, Midai, P Buru, Ranai, Sedanau, and Tarempa grids Bangka, Belitung, S Nasik, and Seliu grids Khatulistiwa grid Barito grid Mahakam grid Tarakan grid Sulutgo grid Sulutgo grid Sulutgo grid Kendari, Bau Bau, Kolaka, Lambuya, Wangi Wangi, and Raha grids Sulbangteng grid Lombok, Bima, and Sumbawa	0.616 tCO ₂ /MWh 0.477 tCO ₂ /MWh 0.664 tCO ₂ /MWh 0.555 tCO ₂ /MWh 0.553 tCO ₂ /MWh 0.532 tCO ₂ /MWh 0.666 tCO ₂ /MWh 0.527 tCO ₂ /MWh 0.325 tCO ₂ /MWh 0.320 tCO ₂ /MWh 0.593 tCO ₂ /MWh 0.593 tCO ₂ /MWh	
	grids Kupang, Ende, Maumere, Waingapu, Labuan Bajo, and Larantuka grids Ambon, Tual, and Namlea grids Tobelo and Ternate Tidore	0.507 tCO ₂ /MWh 0.533 tCO ₂ /MWh 0.532 tCO ₂ /MWh	
	grids Jayapura, Timika, Merauke, and Biak grids	0.523 tCO ₂ /MWh	

Sorong, Nabire, and	0.525 tCO ₂ /MWh
Manokwari grids	

In case the hydro power generation system(s) in a proposed project activity is connected to an internal grid connecting to both a national/regional grid, and an isolated grid and/or a captive power generator (Case 2), $EF_{RE,grid}$ is set as follows:

Jamali – Bintan grid	0.533 tCO ₂ /MWh
Sumatra grid	0.477 tCO ₂ /MWh
Batam grid	$0.533 \text{ tCO}_2\text{/MWh}$
Tanjung Balai Karimun,	$0.533 \text{ tCO}_2/\text{MWh}$
Tanjung Batu, Kelong, Ladan,	
Midai, P Buru, Ranai, Sedanau,	
and Tarempa grids	
Bangka, Belitung, S Nasik, and	0.533 tCO ₂ /MWh
Seliu grids	
Khatulistiwa grid	0.532 tCO ₂ /MWh
Barito grid	0.533 tCO ₂ /MWh
Mahakam grid	0.527 tCO ₂ /MWh
Tarakan grid	0.493 tCO ₂ /MWh
Sulutgo grid	0.325 tCO ₂ /MWh
Sulselbar grid	0.320 tCO ₂ /MWh
Kendari, Bau Bau, Kolaka,	0.533 tCO ₂ /MWh
Lambuya, Wangi Wangi, and	
Raha grids	
Sulbangteng grid	0.517 tCO ₂ /MWh
Lombok, Bima, and Sumbawa	0.533 tCO ₂ /MWh
grids	-
Kupang, Ende, Maumere,	0.507 tCO ₂ /MWh
Waingapu, Labuan Bajo, and	-
Larantuka grids	
Ambon, Tual, and Namlea grids	0.533 tCO ₂ /MWh
Tobelo and Ternate Tidore grids	0.532 tCO ₂ /MWh
Jayapura, Timika, Merauke, and	0.523 tCO ₂ /MWh
Biak grids	0.0000000000000000000000000000000000000
Sorong, Nabire, and	0.525 tCO ₂ /MWh
Manokwari grids	5.5_50 to 0_1.2 tt II
manon man grad	

In case the hydro power generation system(s) in a proposed project activity is connected to an internal grid which is not connected to a national/regional grid, and only connected to an isolated grid and/or a captive power generator (Case 3), $EF_{RE,cap}$: 0.533 tCO_2/MWh is applied.