Joint Crediting Mechanism Approved Methodology ID_AM019 "Electricity generation by installation of run-of-river hydro power generation system(s) in Indonesia"

A. Title of the methodology

Electricity generation by installation of run-of-river hydro power generation system(s) in Indonesia, ver1.0

B. Terms and definitions

Т	<i>`erms</i>		Definitions
Run-of-river	hydro	power	A method of power generation that uses water running in a
generation			river or a waterway directly into power generation unit.

C. Summary of the methodology

Items	Summary
GHG emission reduction	Displacement of grid electricity including national/regional and
measures	isolated grids and/or captive electricity by installation with the
	operation of hydro power generation system(s).
Calculation of reference	Reference emissions are calculated on the basis of the
emissions	electricity output of the hydro power generation system(s)
	multiplied by either; 1) conservative emission factor of the grid,
	or 2) conservative emission factor of the captive diesel power
	generator based on the location of the projects.
Calculation of project	Project emissions are the emissions from the hydro power
emissions	generation system(s), which are assumed to be zero.
Monitoring parameters	The quantity of the electricity generated by the project hydro
	power generation system(s).

D. Eligibility criteria			
This methodolo	gy is applicable to projects that satisfy all of the following criteria.		
Criterion 1	The project newly installs a run-of-river hydro power generation system(s).		

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Consumption of grid electricity including national/regional and	CO ₂		
isolated grids and/or captive electricity			
Project emissions			
Emission sources	GHG types		
Generation of electricity from the hydro power generation system(s)	N/A		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The default emission factor is set in a conservative manner for the Indonesian regional grids. The default emission factor is calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run (LCMR) resources for each regional grid in Indonesia during the year 2013-2015 and refers to the conservative emission factor of each fossil fuel power plant in order to secure net emission reductions. The conservative emission factor of each plant are calculated as 0.795 tCO₂/MWh for coal-fired power plant and 0.320 tCO₂/MWh for gas-fired power plant based on the survey on heat efficiency of power plant in Indonesia. The emission factor for diesel power plant is calculated as 0.533 tCO₂/MWh based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case the hydro power generation plant in a proposed project activity is directly connected or connected via an internal grid not connecting to either an isolated grid or a captive power generator, to a national/regional grid (Case 1), the value of operating margin including LCMR resources, calculated using the best heat efficiency among currently operational plants in Indonesia for the emission factors of fossil fuel power plants, are applied. The emission factors to be applied are set as "Emission factor for Case 1 (tCO₂/MWh)" as shown in Section I. below.

In case the hydro power generation system(s) in a proposed project activity is connected to an internal grid connecting to both a national/regional, and an isolated grid and/or a captive power generator (Case 2), the lower values between emission factors of "Emission factor for Case 1

 (tCO_2/MWh) " and the conservative emission factors of diesel-fired power plant of 0.533 tCO_2/MWh is applied. The emission factors to be applied are set as "Emission factor for Case 2 (tCO_2/MWh)" as shown in Section I. below.

In the case that the hydro power generation system(s) in a proposed project activity is only connected to an internal grid connecting to an isolated grid and/or a captive power generator (Case 3), the emission factor of a diesel generator calculated by applying a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel generator is applied, which is set as $0.533 \text{ tCO}_2/\text{MWh}$.

The emission factors to be applied for each case are shown in Section I.

F.2. Calculation of reference emissions

G. Calculation of project emissions

 $PE_p = 0$ PE_p : Project emissions during the period *p* [tCO₂/p]

H. Calculation of emissions reductions

 $ER_{p} = RE_{p} - PE_{p}$ $= RE_{p}$

 ER_p : Emission reductions during the period *p* [tCO₂/p]

 RE_p : Reference emissions during the period p [tCO2/p] PE_p : Project emissions during the period p [tCO2/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of c	lata	Source
EFRE,i	Reference CO ₂ emission factor fe	or the project hydro	Additional information
	power generation system <i>i</i> .		The default emission
			factor value is obtained
	The value for $EF_{RE,i}$ is selected	l from the emission	from a study of
	factor based on the national/region	onal grid (EF _{RE,grid}) or	electricity systems in
	based on isolated grid and/or a	captive diesel power	Indonesia and the most
	generator ($EF_{RE,cap}$) in the follow	ing manner:	efficient diesel power
	In case the hydro power concr	generator (a default	
	proposed project activity is di	rectly connected or	value of 49% heat
	connected via an internal grid not	t connecting to either	efficiency is above the
	an isolated grid or a captive po	wer generator to a	value of the world's
	national/regional grid (Case 1)	leading diesel	
	follows:	, LI RE, grid 15 Set as	generator).
	Tonows.		The default value is
	Jamali grid	0.616 tCO ₂ /MWh	revised if deemed
	Sumatra grid Batam – Bintan grid	$0.4 / / tCO_2/MWh$ 0.664 tCO_2/MWh	necessary by the JC.
	Tanjung Balai Karimun,	$0.555 \text{ tCO}_2/\text{MWh}$	
	Tanjung Batu, Kelong, Ladan,	-	
	Midai, P Buru, Ranai,		
	Sedanau, and Tarempa grids	0.552.00 0.000	
	and Seliu grids	$0.553 \text{ tCO}_2/\text{MWh}$	
	Khatulistiwa grid	0.532 tCO ₂ /MWh	
	Barito grid	0.666 tCO ₂ /MWh	
	Mahakam grid	0.527 tCO ₂ /MWh	
	Tarakan grid	0.493 tCO2/MWh	
	Sulutgo grid	0.325 tCO ₂ /MWh	
	Sulselbar grid	0.320 tCO ₂ /MWh	
	Kendari, Bau Bau, Kolaka,	0.593 tCO ₂ /MWh	
	Lambuya, Wangi Wangi, and		
	Kalla grius Sulbangteng grid	$0.517 t CO_{2}/MWb$	
	Lombok Bima and Sumbawa	$0.517 \text{ tc} O_2/\text{MWh}$	
	grids	0.501 (002/01001	

Kupang, Ende, Maumere, Waingapu, Labuan Bajo, and	0.507 tCO ₂ /MWh
Larantuka grids	$0.533 t CO_2/MWb$
grids	0.555 1002/1010011
Tobelo and Ternate Tidore	0.532 tCO ₂ /MWh
Jayapura, Timika, Merauke,	0.523 tCO ₂ /MWh
Sorong, Nabire, and Manokwari grids	0.525 tCO ₂ /MWh
In case the hydro power genera	ation system(s) in a
proposed project activity is conr	nected to an internal
grid connecting to both a nation	al/regional grid, and
an isolated grid and/or a capti	ve power generator
(Case 2), $EF_{RE,grid}$ is set as follow	s:
Iamali – Bintan orid	0 533 tCO ₂ /MWh
Sumatra grid	$0.333 \text{ tCO}_2/\text{MWh}$
Batam grid	$0.533 \text{ tCO}_2/\text{MWh}$
Taniung Balai Karimun.	$0.533 \text{ tCO}_2/\text{MWh}$
Tanjung Batu, Kelong, Ladan, Midai, P Buru, Ranai, Sedanau, and Tarempa grids	
Bangka, Belitung, S Nasik, and Seliu grids	0.533 tCO ₂ /MWh
Khatulistiwa grid	0.532 tCO ₂ /MWh
Barito grid	0.533 tCO2/MWh
Mahakam grid	0.527 tCO2/MWh
Tarakan grid	0.493 tCO2/MWh
Sulutgo grid	0.325 tCO2/MWh
Sulselbar grid	0.320 tCO ₂ /MWh
Kendari, Bau Bau, Kolaka, Lambuya, Wangi Wangi, and Raha grids	0.533 tCO ₂ /MWh
Sulbangteng grid	0.517 tCO ₂ /MWh
Lombok, Bima, and Sumbawa grids	0.533 tCO ₂ /MWh
Kupang, Ende, Maumere, Waingapu, Labuan Bajo, and Larantuka grids	0.507 tCO ₂ /MWh
Ambon, Tual. and Namlea grids	0.533 tCO ₂ /MWh
Tobelo and Ternate Tidore grids	0.532 tCO ₂ /MWh
Jayapura, Timika, Merauke, and Biak grids	0.523 tCO ₂ /MWh
Sorong, Nabire, and Manokwari grids	0.525 tCO ₂ /MWh
In case the hydro power genera	ation system(s) in a

proposed project activity is connected to an internal	
grid which is not connected to a national/regional	
grid, and only connected to an isolated grid and/or a	
captive power generator (Case 3), EF _{RE,cap} : 0.533	
tCO ₂ /MWh is applied.	

History of the document

Version	Date	Contents revised
01.0	9 May 2019	Electronic decision by the Joint Committee
		Initial approval.