JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of Indonesia
Name of the methodology proponents	myclimate Japan Co., Ltd.
submitting this form	
Sectoral scope(s) to which the Proposed	03. Energy Demand
Methodology applies	
Title of the proposed methodology, and	Installation of LED Lighting for Grocery
version number	Store
List of documents to be attached to this form	The attached draft JCM-PDD:
(please check):	Additional information
	1) Additional information on reference
	emissions
Date of completion	04.09.2014

History of the proposed methodology

Version	Date	Contents revised
01.0	04.09.2014	First edition

A. Title of the methodology

Installation of LED Lighting for Grocery Store Version 1.0

B. Terms and definitions

Terms	Definitions	
Luminous efficiency	Luminous efficiency is the capacity of light flux per watt.	
	The formula to calculate luminous efficiency is as below.	
	Luminous efficiency $[lm/W] =$ Luminous flux $[lm] \div Rated$ power	
	consumption [W]	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to the project that aims for saving	
measures	energy by introducing LED (Light Emitting Diode) lighting for	
	grocery store in Indonesia.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	lighting, calculated with total power consumption of project	
	lighting, ratio of luminous efficiency of project/reference	
	lighting, and CO ₂ emission factor for consumed electricity.	
Calculation of project	Project emissions are GHG emissions from using project	
emissions	lighting, calculated with total power consumption of project	
	lighting, and CO ₂ emission factor for consumed electricity.	
Monitoring parameters	Total power consumption of project lighting	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	LED lighting is newly installed or installed to replace existing fluorescent	
	lighting for grocery store whose selling area is less than 400 (four hundred)	
	m^2 .	

Criterion 2	The installed LED lighting is a straight type LED with color temperature	
	between 5,000 and 6,500 K, length between 602.5 and 1,513.0 mm, and	
	luminous efficiency of more than 120 lm/W.	
Criterion 3	In the case of replacing existing fluorescent lighting with the project LED	
	lighting, mercury contained in existing fluorescent lighting is not released to	
	the environment.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference lighting	CO_2	
Project emissions		
Emission sources	GHG types	
Power consumption by project LED lighting	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated with total power consumption of project lighting, ratio of luminous efficiency of project/reference lighting, and CO₂ emission factor for consumed electricity.

The luminous efficiency of reference lighting is conservatively set *ex ante* in the following manner to ensure the net emission reductions.

- 1. In Indonesia, usually fluorescent lighting is chosen when purchasing lighting equipment.
- 2. The reference luminous efficiency of LED lighting is adopted as LED lighting is more energy efficient than fluorescent lighting.
- 3. The most efficient value of LED lighting locally available is defined as η_{RE} , as described in Section I.

F.2. Calculation of reference emissions

	$RE_p = EC_{PJ,p} \times (\eta_{PJ} \div \eta_{RE}) \times EF_{elec}$
RE_p	: Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,p}$: Total power consumption of project lighting during the period <i>p</i> [MWh/p]
η_{PJ}	: Luminous efficiency of project lighting [lm/W]
η_{RE}	: Luminous efficiency of reference lighting [lm/W]
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]

G. Calculation of project emissions

$PE_p = EC_{PJ,p} \times EF_{elec}$		
PE_p	: Project emissions during the period p [tCO ₂ /p]	
$EC_{PJ,p}$: Total power consumption of project lighting during the period p	
	[MWh/p]	
EF_{elec}	: CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]	

H. Calculation of emissions reductions

	$ER_p = RE_p - PE_p$		
ER_p :	Emissions reductions during the period p [tCO ₂ /p]		
RE_p :	Reference emissions during the period p [tCO ₂ /p]		
PE_p :	Project emissions during the period p [tCO ₂ /p]		

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of Data	Source
	CO ₂ emission factor for consumed electricity.	[Grid electricity]
FF	When project lighting consumes only grid	Updates on Grid Electricity
EF_{elec}	electricity or captive electricity, the project	Emission Factors (calculated
	participant applies the CO ₂ emission factor	in year 2013), National

	respectively.	Committee on Clean
	When project lighting may consume both grid	Development Mechanism,
	electricity and captive electricity, the project	Indonesia, unless otherwise
	participant applies the CO_2 emission factor	instructed by the Joint
	with lower value.	Committee.
	[CO ₂ emission factor]	[Captive electricity]
	For grid electricity: The most recent value	CDM approved small scale
	available from the source stated in this table	methodology AMS-I.A
	at the time of validation	
	For captive electricity: 0.8* [tCO ₂ /MWh]	
	*The most recent value available from CDM	
	approved small scale methodology AMS-I.A	
	at the time of validation is applied.	
	Luminous efficiency of project lighting. The	Specifications of project
	value prepared by manufacturer is applied.	lighting prepared for the
<u> 10 – -</u>	When more than one type of lighting	quotation or factory
η_{PJ}	equipment is installed, the luminous	acceptance test data by
	efficiency of lowest value amongst the	manufacturer.
	installed equipments is applied.	
	Luminous efficiency of reference lighting.	Nominal value available on
	Since LED lighting is limited and can only be	product catalogs, specification
	found in newly opened grocery stores by	documents or websites.
	international brands, reference emissions are	
	determined under the assumption that locally	The default value is derived
	manufactured LED lighting is installed in the	from the result of survey on
	stores. Top 5 manufacturers of lighting	luminous efficiency of LED
η_{RE}	equipment in the country are identified	from manufacturers that have
	through interview, and based on Criterion 2,	high market share. The default
	LED lighting by one manufacturer meets the	value should be revised if
	specifications. Therefore, luminous efficiency	necessary from survey result
	of merchandise by the manufacturer (110	which is conducted by JC or
	lm/W) is set as η_{RE} .	project participants every three
		years. The survey should prove
		the use of clear methodology.