JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Republic of Indonesia	
Name of the methodology proponents	EX Research Institute Limited	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy saving	
Methodology applies		
Title of the proposed methodology, and	Installation of Energy-efficient Refrigerators	
version number	Using Natural Refrigerant at Food Industry Cold	
	Storage and Frozen Food Processing Plant	
	Version 1.0	
List of documents to be attached to this form	☐The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	1/08/2014	

History of the proposed methodology

Version	Date	Contents revised
01.0	17/03/2014	First edition

A. Title of the methodology

Installation of Energy-efficient Refrigerators Using Natural Refrigerant at Food Industry Cold Storage and Frozen Food Processing Plant

B. Terms and definitions

Terms	Definitions
Two stage compressor	A two stage compressor is a compressor equipped with a low
	stage compressor and a high stage compressor between an
	evaporator and a condenser which increases the pressure of
	low pressure refrigerant gas from the evaporator up to the
	intermediate pressure using the low stage compressor and
	further increases the pressure of the refrigerant gas using the
	high stage compressor to feed it to the condenser.
Secondary loop cooling system	A secondary loop cooling system is an indirect cooling
	system that cools the object with a secondary refrigerant
	(e.g., brine) which is cooled by a primary refrigerant. The
	secondary loop cooling system primarily consists of the
	refrigerator which is mainly composed of the compressor and
	heat exchangers as the primary refrigeration cycle and
	pumps, heat exchangers and fans as the secondary
	refrigeration cycle.
	The secondary loop cooling system is described as "primary
	refrigerant/secondary refrigerant" (e.g., "HFC/brine").
Coefficient of Performance	COP is defined as a value calculated by dividing refrigeration
(COP)	capacity by electricity consumption of a refrigerator under a
	full load condition. Electricity consumption of a refrigerator
	is defined in this methodology as the electricity used to
	operate the compressor. Electricity consumption of pumps for
	circulating the secondary refrigerant, and other ancillary
	equipments are not included in the COP calculation.
	The temperature conditions at which COPs are calculated in
	this methodology are shown below:
	<for cold="" storage=""></for>

	Note: Temperature condition: - 25 deg. C Cooling water fed to condenser: inlet 32 deg. C	
	Cooling water fea to condenser, thier 32 deg. C	
	<for freezer="" individual="" quick=""></for>	
	Note: Temperature condition: - 35 deg. C	
	Cooling water fed to condenser: inlet 32 deg. C	
	Individual quick freezer is used for the purpose of continuous	
	freezing for food products fed by a belt conveyor system.	
Natural refrigerant	Natural refrigerant refers to naturally occurring substances	
	with refrigeration capacity and with zero ozone depletion	
	potential (ODP) (e.g., CO ₂ and NH ₃).	
Periodical check	Periodical check is a periodical maintenance operation done	
	by the manufacturer or an agent who is authorized by the	
	manufacturer to maintain refrigerator performance (not	
	including part replacement or overhaul).	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology applies to projects that aim to save energy by	
measures	introducing high efficiency refrigerators to the food industry	
	cold storage and frozen food processing plants in Indonesia.	
Calculation of reference	Reference emissions are GHG emissions from the usage of	
emissions	reference refrigerators, calculated by using data of power	
	consumption of project refrigerator, ratio of COPs of	
	reference/project refrigerators and CO ₂ emission factor for	
	electricity consumed.	
Calculation of project	Project emissions are GHG emissions from the usage of project	
emissions	refrigerator, calculated with power consumption of project	
	refrigerator and CO ₂ emission factor for electricity consumed.	
Monitoring parameters	Amount of electricity consumed by project refrigerator	
	Electricity imported from the grid, where applicable	
	• Operating time of captive electricity generator, where	
	applicable	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project installs cooling system at food industry cold storage and frozen food	
	processing plants for the purpose of chilling the food products to below -20 deg.	
	C.	
Criterion 2	The project system is a secondary loop cooling system using natural refrigerant.	
	CO ₂ is used as the secondary refrigerant in the system.	
Criterion 3	The refrigerator applied in the project cooling system is a two stage compressor	
	refrigerator with a cooling capacity as shown below:	
	For cold storage: less than 340kW	
	For individual quick freezer: less than 260kW	
Criterion 4	The compressor of the project refrigerator is controlled by inverter.	
Criterion 5	COP of the project refrigerator i (COP _{PJ,i}) is shown below:	
	For cold storage: more than 2.0	
	For individual quick freezer: more than 1.5	
Criterion 6	Periodical check at least once a year is planned.	
Criterion 7	Plan for not releasing the primary refrigerant used for project refrigerator is	
	prepared. In the case of replacing the existing refrigerator with the project	
	refrigerator, refrigerant used for the existing refrigerator is not released to the air.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Electricity consumption by the reference refrigerator CO ₂		
Project emissions		
Emission sources GHG type		
Electricity consumption by the project refrigerator	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying the power consumption of project refrigerator, ratio of COPs for reference/project refrigerators and CO_2 emission factor for electricity consumed.

Four types of cooling system are identified as possible cooling systems except for the project system: HFC dry expansion (single loop), NH₃ flooded, pump system (single loop), HFC/brine

(secondary loop) and NH₃/brine (secondary loop). This methodology ensures that a net emission reduction is achieved by applying the following conservative assumptions:

• COP RE value adopted:

The maximum COP values of refrigerators among the available data of the possible type cooling systems within the range specified by Criterion 2 is defined as COP_{RE} (1.71 for cold storage, 1.32 for individual quick freezer). The most common COP values lie between 1.60 and 1.65 for cold storages and between 1.20 and 1.25 for individual quick freezers.

• Electricity consumption of the pump for the secondary refrigerant:

Among the possible types of refrigerators, two possible cooling systems that use the secondary loop consume more electricity since the brine pump consumes more electricity than the CO₂ pump in the project cooling system. However, emissions from electricity consumption by the pump are not included in the emission calculations. The other two possible cooling systems using single loop have pumps that require almost equal amount of electricity to the project cooling system.

• Emissions associated with refrigerant loss from refrigerator:

Among the four possible types of cooling systems, two cooling systems use HFCs (R404A, R507A) as refrigerant and these have high GWP (3,000-4,000). The project cooling system uses a natural refrigerant that has a very small GWP (CO₂: 1, NH₃: less than 1). Emissions associated with the loss of refrigerant are not counted in the emission reduction calculation.

• Project refrigerator equipped with inverter:

The project refrigerator is controlled by inverter (as specified by Criterion 4). In this methodology, COP is defined under the condition of full load although in reality a cold storage is often operated under the condition of partial load where the efficiency of the refrigerator without inverter tends to decrease because of its intermittent operation. Although it is not clear whether all the refrigerators of the four possible types of cooling systems are equipped with inverter, calculating emissions based on the COPs of full load conditions is deemed conservative since the efficiency of the project refrigerator is likely to be maintained either at the full load or at partial load condition as it is equipped with inverter.

F.2. Calculation of reference emissions

Reference emissions are calculated by the following equation.

 $RE_{p} = \sum_{i} \{ EC_{PJ,i,p} \times (COP_{PJ,i} \div COP_{RE,i}) \times EF_{elec} \}$

 RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PJ, i,p}$: Amount of electricity consumption of the project refrigerator i during the

period p [MWh/p]

 $COP_{PJ,i}$: COP of the project refrigerator type i COP_{RE,i} : COP of the reference refrigerator type i

 EF_{elec} : CO_2 emission factor for consumed electricity [tCO_2/MWh]

G. Calculation of project emissions

Project emissions are calculated by the following equation.

 $PE_p = \sum_{i} (EC_{PI,i,p} \times EF_{elec})$

PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Amount of electricity consumption of the project refrigerator i during the

period p [MWh/p]

EF_{elec} : CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

Emissions reductions are calculated as the difference between the reference emissions and the project emissions, as follows:

 $ER_p = RE_p - PE_p$

 $\operatorname{ER}_{\operatorname{p}}$: Emissions Reductions during the period p [tCO₂/p] $\operatorname{RE}_{\operatorname{p}}$: Reference Emissions during the period p [tCO₂/p] $\operatorname{PE}_{\operatorname{p}}$: Project Emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project refrigerator consumes only grid	The most recent value available at
	electricity or captive electricity, the project	the time of validation is applied
	participant applies the CO2 emission factor	and fixed for the monitoring
	respectively.	period thereafter. The data is
	When project refrigerator may consume both	sourced from "Emission Factors
	grid electricity and captive electricity, the	of Electricity Interconnection
	project participant applies the CO ₂ emission	Systems", National Committee on
	factors for grid and captive electricity	Clean Development Mechanism
	proportionately.	Indonesian DNA for CDM unless
		otherwise instructed by the Joint
	Proportion of captive electricity is derived	Committee.
	from dividing captive electricity generated by	[Captive electricity]
	total electricity consumed at the project site.	CDM approved small scale
	The total electricity consumed is a summation	methodology: AMS-I.A.
	of grid electricity imported ($EI_{grid,p}$) and	
	captive electricity generated $(EG_{gen,p})^*$ during	
	the monitoring period.	
	* Captive electricity generated can be derived	
	from metering electricity generated or	
	monitored operating time (h _{gen,p}) and rated	
	capacity of generator (RC _{gen}).	
	[CO ₂ emission factor]	
	For grid electricity: The most recent value	
	available from the source stated in this table	
	at the time of validation	
	For captive electricity: 0.8* [tCO ₂ /MWh]	
	*The most recent value available from CDM	
	approved small scale methodology AMS-I.A.	
	at the time of validation is applied.	
COP _{RE,i}	COP of the reference refrigerator <i>i</i> .	Specifications for the quotation or
	The default values for $COP_{RE,i}$ are set as	factory acceptance test data at the
	follows:	time of shipment by manufacturer.
	For cold storage: 1.71	

	For individual quick freezer: 1.32	The default COP values are derived
		from the maximum value of COP
		among the available data of the
		possible types of refrigerators
		except project within the range
		specified by Criterion 2.
		The survey should prove the use of
		clear methodology. The $COP_{RE,i}$
		should be revised if necessary from
		survey result which is conducted by
		JC or project participants every
		three years.
$COP_{PJ,i}$	COP of the project refrigerator i	Specifications for the quotation or
		factory acceptance test data at the
		time of shipment by manufacturer.
RC_{gen}	Rated capacity of generator, where	Specification of generator for
	applicable.	captive electricity