JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia	
Name of the methodology proponents	Institute for Global Environmental Strategies	
submitting this form		
Sectoral scope(s) to which the Proposed Methodology applies	1. Energy industries (renewable-/non-renewable sources)	
Title of the proposed methodology, and	Installation of Solar PV System and Storage	
version number	Battery System, Ver. 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	25/ 05 /2018	

History of the proposed methodology

Version	Date	Contents revised	
01.0	25/05/2018	First edition	

A. Title of the methodology

Installation of Solar PV System and Storage Battery System, Ver. 01.0

B. Terms and definitions

Terms	Definitions		
Solar photovoltaic (PV) system	An electricity generation system which converts sunlight		
	into electricity by the use of photovoltaic (PV) modules.		
	The system also includes ancillary equipment such as		
	inverters required to change the electrical current from		
	direct current (DC) to alternating current (AC).		
Storage battery system	The storage battery system which is consisted of power		
	converter(s) and connected group of battery cell charges and		
	discharges itself by converting electrical energy into		
	chemical energy.		

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Displacement of grid electricity and/or captive electricity by	
measures	installation and operation of solar PV system(s) and storage	
	battery system(s).	
Calculation of reference	Reference emissions are calculated on the basis of the amount of	
emissions	the electricity displaced by the project multiplied by either: 1)	
	conservative emission factor of the grid, or 2) conservative	
	emission factor of the captive diesel power generator.	
Calculation of project	Project emissions are the emissions from the solar PV system(s)	
emissions	and the storage battery system(s), which are assumed to be zero.	
Monitoring parameters	The quantity of the electricity generated by the project solar PV	
	system(s) and charge and discharge amounts of the storage	
	battery system(s) as necessary depending on the selected option	
	for calculation of reference emissions.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The solar PV system(s) and storage battery system(s) are newly installed.		
Criterion 2	The PV modules are certified for design qualifications (IEC 61215, IEC 61646 or		
	IEC 62108) and safety qualification (IEC 61730-1 and IEC 61730-2).		
Criterion 3	The equipment to monitor output power of the solar PV system(s) and irradiance		
	is installed at the project site.		
Criterion 4	In the case of replacing the existing storage battery system (s), a plan is prepared		
	in which mercury used in the existing storage battery system (s) is not released to		
	the environment. Execution of the prevention plan is checked at the time of		
	verification, in order to confirm that mercury used for the existing one replaced		
	by the project is not released to the environment.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Consumption of grid electricity and/or captive electricity	CO_2	
Project emissions		
Emission sources	GHG types	
Generation of electricity from the solar PV system(s)	N/A	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The default emission factor is set in a conservative manner for the Indonesian regional grids. The emission factor is calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run (LCMR) resources for each regional grid in Indonesia during the year 2013-2015 and refers to the conservative emission factor of each fossil fuel power plant in order to secure net emission reductions. The conservative emission factor of each plant are calculated as 0.795 t-CO₂/MWh for coal-fired power plant and 0.320 t-CO₂/MWh for gas-fired power plant based on the survey on heat efficiency of power plant in Indonesia. The emission factor for diesel power plant is calculated as 0.533 t-CO₂/MWh based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case the PV system(s) in a proposed project activity is directly connected or connected via an internal grid, not connecting either an isolated grid or a captive power generator, to a national/regional grid (PV Case 1), the value of operating margin including LCMR resources, using the best heat efficiency among currently operational plants in Indonesia for the calculated emission factors of fossil fuel power plants, is applied. The emission factors to be applied are shown in column "Emission factor for PV Case 1 (tCO_2/MWh)" of Table 1 of the additional information.

In the case the PV system(s) in a proposed project activity is connected to an internal grid connecting to both a national/regional, and an isolated grid and/or a captive power generator (PV Case 2), the lower values between emission factors as shown in Section I. and the conservative emission factors of diesel-fired power plant of 0.533 t-CO₂/MWh is applied. The emission factors to be applied for PV Case 2 (t-CO₂/MWh) are shown in Section I.

In the case that the PV system(s) in a proposed project activity is only connected to an internal grid connecting to an isolated grid and/or a captive power generator (PV Case 3), the emission factor of a diesel generator calculated by applying the efficient heat efficiency of 49%, an efficiency level which has not been achieved yet by the world's leading diesel generator is applied, which is set as $0.533 \text{ tCO}_2/\text{MWh}$.

The result of calculation for emission factors to be applied for each case is shown in Section I.

F.2. Calculation of reference emissions

For calculation of reference emissions, either Option1, Option2, Option3-1 or Option3-2 is selected.

Option1:

$$RE_{p} = \sum_{i,j} \{EG_{i,p} \times (1 - LR_{j,p})\} \times EF_{RE}$$

- RE_p : Reference emissions during the period p [tCO₂/p]
- $EG_{i,p}$: Quantity of the electricity generated by the project solar PV system *i* during the period *p* [MWh/p]
- $LR_{i,p}$: Loss ratio of charge and discharge on the project storage battery system j during the

period p [%]

- EF_{RE} : Reference CO₂ emission factor for the project system [tCO₂/MWh]
 - : Identification number of project solar PV system
 - : Identification number of the project storage battery system

Option2:

i

i

$$RE_{p} = \sum_{i,j} \{EG_{i,p} - EC_{i,j,p} \times LR_{j,p}\} \times EF_{RE}$$

- RE_p : Reference emissions during the period p [tCO₂/p]
- $EG_{i,p}$: Quantity of the electricity generated by the project solar PV system *i* during the period *p* [MWh/p]
- $EC_{i,j,p}$: Quantity of the electricity charged by the project solar PV system *i* to the project storage battery system *j* during the period *p* [MWh/p]
- $LR_{j,p}$: Loss ratio of charge and discharge on the project storage battery system *j* during the period *p* [%]
- EF_{RE} : Reference CO₂ emission factor for the project system [tCO₂/MWh]

Option3-1 (In case the project storage battery system(s) are only charged by the project PV system(s)):

$$RE_{p} = \sum_{i,j} \{EG_{i,p} - EC_{i,j,p} + ED_{j,p}\} \times EF_{RE}$$

- RE_p : Reference emissions during the period p [tCO₂/p]
- $EG_{i,p}$: Quantity of the electricity generated by the project solar PV system *i* during the period *p* [MWh/p]
- $EC_{i,j,p}$: Quantity of the electricity charged by the project solar PV system *i* to the project storage battery system *j* during the period *p* [MWh/p]
- $ED_{j,p}$: Quantity of the electricity discharged from the project storage battery system *j* during the period *p* [MWh/p]
- EF_{RE} : Reference CO₂ emission factor for the project system [tCO₂/MWh]

Option3-2 (In case the project storage battery system(s) are charged by electricity sources other than the project PV system(s)):

$$RE_{p} = \sum_{i,j} \{ EG_{i,p} - EC_{i,j,p} + ED_{j,p} \times EC_{i,j,p} \div ECA_{j,p} \} \times EF_{RE}$$

- RE_p : Reference emissions during the period p [tCO₂/p]
- $EG_{i,p}$: Quantity of the electricity generated by the project solar PV system *i* during the period *p* [MWh/p]
- $EC_{i,j,p}$: Quantity of the electricity charged by the project solar PV system *i* to the project storage battery system *j* during the period *p* [MWh/p]
- EF_{RE} : Reference CO₂ emission factor for the project system [tCO₂/MWh]
- $ED_{j,p}$: Quantity of the electricity discharged from the project storage battery system *j* during the period *p* [MWh/p]
- $ECA_{j,p}$: Quantity of the electricity charged by all electricity sources to the project storage battery system *j* during the period *p*[MWh/p]

G. Calculation of project emissions

 $PE_p = 0$

 PE_p : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

$$ER_p = RE_p \cdot PE_p$$

 $= RE_p$

 ER_p : Emission reductions during the period p [tCO₂/p]

- RE_p : Reference emissions during the period p [tCO₂/p]
- PE_p : Project emissions during the period *p* [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{RE}	Reference CO ₂ emission factor for the project	The default emission
	system.	factor value is obtained
	The value for EF_{RE} is selected from the emission factors based on the national/regional grid (EE _{RE} ,)	from a study of electricity systems in Indonesia and
	or based on isolated grid and/or a captive diesel	heat efficiency of the world's leading diesel

power generator $(EF_{RE,cap})$ in the f	following manner:	generator. The default
In area the $\mathbf{D}\mathbf{V}$ system(s) as	ad storage bettery	value is revised if deemed
In case the PV system(s) and	id storage battery	necessary by the JC.
system(s) in a proposed project	activity are directly	
connected, or connected via an internal grid not		
connecting to either an isolated grid or a captive		
power generator, to a national	/regional grid (PV	
Case 1) EE_{PE} is set as follows:		
Jamali grid	0.616 tCO ₂ /MWh	
Sumatra grid	$0.477 \text{ tCO}_2/\text{MWh}$	
Batam grid	0.664 tCO ₂ /MWh	
Taniung Pinang, Taniung	$0.555 \text{ tCO}_2/\text{MWh}$	
Balai Karimun, Taniung		
Batu, Kelong, Ladan, Letung,		
Midai P Buru Ranai		
Sedanau Serasan and		
Taremna grids		
Bangka Belitung S Nasik	$0.553 t CO_2/MWh$	
and Seliu orids	0.555 1002 11 111	
Khatulistiwa grid	0.532 tCO ₂ /MWh	
Barito grid	$0.552 \text{ tCO}_2/\text{MWh}$	
Mahakam grid	0.527 tCO/MWh	
Tarakan grid	$0.493 \text{ tCO}_2/\text{MWh}$	
Sulutgo grid	$0.325 \text{ tCO}_2/\text{MWh}$	
Sulselbar grid	$0.320 \text{ tCO}_2/\text{MWh}$	
Kendari Bau Bau Kolaka	$0.520 \text{ tCO}_2/\text{MWh}$	
Lambuya Wangi Wangi and	0.575 (002) (11)	
Raha grids		
Palu Parioi orid	$0.517 t CO_2/MWh$	
Lombok Bima and	$0.561 \text{ tCO}_2/\text{MWh}$	
Sumbawa grids	0.501 (00)/10/01	
Kupang Ende Maumere	$0.507 tCO_2/MWh$	
and Wainganu grids		
Ambon Tual and Namlea	$0.533 t CO_2/MWh$	
grids		
Tobelo and Ternate Tidore	$0.532 \text{ tCO}_2/\text{MWh}$	
grids		
Javapura, Timika, and	0.523 tCO ₂ /MWh	
Genvem grids		
Sorong grid	0.525 tCO ₂ /MWh	
66	2	
In case the PV system(s) and	nd storage battery	
system(s) in a proposed pr	oject activity are	
connected to an internal grid or	onnecting to both a	
national/regional grid and a capt	ive nower generator	
(DV Case 2) EE is set as follow		
(Γ v Case 2), $E\Gamma_{RE}$ is set as follow	75.	

.

	Jamali grid	0.533 tCO ₂ /MWh	
	Sumatra grid	$0.477 \text{ tCO}_2/\text{MWh}$	
	Batam grid	0.533 tCO ₂ /MWh	
	Tanjung Pinang, Tanjung Balai	0.533 tCO ₂ /MWh	
	Karimun, Tanjung Batu,	2	
	Kelong, Ladan, Letung, Midai,		
	P Buru, Ranai, Sedanau,		
	Serasan, and Tarempa grids		
	Bangka, Belitung, S Nasik, and	0.533 tCO ₂ /MWh	
	Seliu grids		
	Khatulistiwa grid	0.532 tCO ₂ /MWh	
	Barito grid	0.533 tCO ₂ /MWh	
	Mahakam grid	0.527 tCO ₂ /MWh	
	Tarakan grid	0.493 tCO ₂ /MWh	
	Sulutgo grid	0.325 tCO ₂ /MWh	
	Sulselbar grid	0.320 tCO ₂ /MWh	
	Kendari, Bau Bau, Kolaka,	$0.533 \text{ tCO}_2/\text{MWh}$	
	Lambuya, Wangi Wangi, and		
	Raha grids		
	Palu Parigi grid	$0.51 / tCO_2 / MWh$	
	aride	$0.555 \text{ ICO}_2/\text{IVI W II}$	
	Kupang Ende Maumere and	0 507 tCO ₂ /MWh	
	Wainganu grids	0.507 (CO2/101001	
	Ambon, Tual, and Namlea	0.533 tCO ₂ /MWh	
	grids		
	Tobelo and Ternate Tidore	0.532 tCO ₂ /MWh	
	grids	-	
	Jayapura, Timika, and Genyem	0.523 tCO ₂ /MWh	
	grids		
	Sorong grid	0.525 tCO ₂ /MWh	
	In $case the DV system(s) on$	d storage bettery	
	in case the FV system(s) an	lu storage Dattery	
	system(s) in a proposed pro	oject activity are	
	connected to an internal grid which is not connected		
	to a national/regional grid, and only connected to an		
	isolated grid and/or a captive power generator (PV		
	Case 3), EF_{RE} , 0.533 tCO ₂ /MWh is applied.		
LR _{j,p}	Loss ratio of charge and discha	rge on the project	Specifications of project
	storage battery system i		storage battery system i
	storage battery system j		storage battery system j
	LR can be calculated by the following equation:		
	$LR_{j,p} = 1 - \varphi_{charge,i,j,p} \times \varphi_{conversion}$	ert,i,j,p	