Joint Crediting Mechanism Approved Methodology ID_AM016 "Installation of gas engine cogeneration system to supply electricity and heat to facility"

A. Title of the methodology

Installation of gas engine cogeneration system to supply electricity and heat to facility, Version 01.0

B. Terms and definitions

Terms	Definitions	
Cogeneration System (CGS)	A system that consists of power generator(s) and boiler(s)	
	supplying both electricity and heat, recovering waste heat	
	exhausted by the power generator(s). The power generator is	
	a gas engine in this methodology.	
Facility	A cluster of buildings and/or plants (or building/plant itself)	
	to which electricity and heat generated by CGS is supplied.	
Power Generation Efficiency	Net quantity of electricity generated per quantity of energy	
	contained in fuel fired in the power generator.	
Boiler Efficiency	Net quantity of heat generated per quantity of energy	
	contained in fuel fired in the boiler.	

C. Summary of the methodology

	Items		Summary
GHG	emission	reduction	Electricity and heat generated by CGS(s) installed in the project
measur	es		facility(ies) substitutes all or part of grid and/or captive
			electricity consumed and heat generated by fossil fuel, which
			leads to efficient energy use of the facility(ies) and in turn GHG
			emission reductions.
Calculo	ation of	reference	Reference emissions are CO ₂ emissions from the use of grid
emissio	ons		and/or captive electricity and heat generated by reference boiler
			in the facility(ies), which are calculated based on: the amount of
			electricity consumption by the facility(ies) which is generated

	by the CGS(s); the amount of heat consumption by the	
	facility(ies) which is generated by the CGS(s); reference boiler	
	efficiency; and CO ₂ emission factors for consumed electricity	
	and fossil fuel consumed by the reference boiler in the	
	facility(ies).	
Calculation of project	Project emissions are CO ₂ emissions from the use of CGS(s),	
emissions	which are calculated based on: the amount of gas fuel	
	consumption by the CGS(s); net calorific value of gas fuel	
	consumed by the CGS(s); and CO ₂ emission factor for gas fuel	
	consumed by the CGS(s).	
Monitoring parameters	Amount of electricity consumption by the facility(ies) which	
	is generated by the CGS(s) [MWh/p]	
	• Amount of heat consumption by the facility(ies) which is	
	generated by the CGS(s) [GJ/p] (Option 1)	
	• Amount of heat supply to the facility(ies) which is generated	
	by the CGS(s) [GJ/p] (Option 2)	
	• Number of days during the monitoring period [day/p]	
	(Option 2)	
	• Amount of gas fuel consumption by the CGS(s) [Nm³/p]	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Gas engine CGS(s) is installed and supplies electricity and heat to facility(ies).			
Criterion 2	The power generation efficiency of the CGS(s) stated in catalogs or other			
	informatio	information prepared by its manufacturer is equal to or greater than the threshold		
	value in the following table corresponding to the electrical output of CGS(s)			
	installed.			
		Electrical output Efficiency threshold		
	x < 2 [MW] 40 [%]			
		$2 [MW] \le x$ 47 [%]		

E. Emission Sources and GHG types

Reference emissions

Emission sources	GHG types	
Electricity consumed in facility(ies)	CO ₂	
Fossil fuel to generate heat in facility(ies)	CO_2	
Project emissions		
Emission sources	GHG types	
Gas fuel consumption by CGS(s)	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on: the amount of electricity consumption by the facility(ies) which is generated by the CGS(s); the amount of heat consumption by the facility(ies) which is generated by the CGS(s); reference boiler efficiency; and CO₂ emission factors for consumed electricity and fossil fuel consumed by the reference boiler in the facility(ies).

A default value for the reference boiler efficiency is conservatively set *ex ante* to 89.0 [%] so as to ensure net emission reductions.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} \sum_{j} RE_{elec,i,j,p} + \sum_{i} \sum_{j} RE_{heat,i,j,p}$$

$$= \sum_{i} \sum_{j} (EG_{i,j,p} \times EF_{elec,RE,j}) + \sum_{j} \left(\sum_{i} HG_{i,j,p} \times \frac{100}{\eta_{RE}} \times EF_{fuel,RE,j} \right)$$
Where
$$RE_{p} : \text{Reference emissions during the period } p \text{ [tCO}_{2}/p]$$

$$RE_{elec,i,j,p} : \text{Reference emissions for electricity consumption by the facility } j \text{ which is generated by the CGS } i \text{ during the period } p \text{ [tCO}_{2}/p]$$

$$RE_{heat,i,j,p} : \text{Reference emissions for heat consumption by the facility } j \text{ which is generated by the CGS } i \text{ during the period } p \text{ [tCO}_{2}/p]$$

$$EG_{i,j,p} : \text{Amount of electricity consumption by the facility } j \text{ which is generated by the CGS } i \text{ during the period } p \text{ [MWh/p]}$$

$$EF_{elec,RE,j} : \text{CO}_{2} \text{ emission factor for consumed electricity in the facility } j \text{ [tCO}_{2}/MWh]}$$

 $HG_{i,i,p}$: Amount of heat consumption by the facility j which is generated by the

CGS i during the period p [GJ/p]

 η_{RE} : Reference boiler efficiency [%]

 $EF_{fuel,RE,j}$: CO₂ emission factor for fossil fuel consumed by the reference boiler in the

facility *j* [tCO₂/GJ]

i : Identification number for the CGS

j: Identification number for the facility to which electricity and heat generated

by the CGS i is supplied

< Monitoring Options for HGiin>

Project participants may select either of the following two monitoring options to obtain a value for $HG_{i,j,p}$.

Option 1: Monitor the amount of heat consumption by the facility j which is generated

by the CGS i during the period p [GJ/p]

Option 2: Monitor the amount of heat supply to the facility j which is generated by the

CGS i during the period p [GJ/p]

Option 1 can be selected when the project participants monitor the amount of heat "consumption".

Option 2 can be selected when the project participants monitor the amount of heat "supply", instead of "consumption", and there has been existing boiler(s) generating steam and/or hot water and supplying to the facility prior to the implementation of the JCM project. In this option, no emission reductions can be claimed from the amount of heat generated by the CGS i and supplied to the facility j which exceeds the maximum capacity of heat generation by the existing boiler(s) supplying to the facility j. The formula written below is applied.

$$\sum_{i} HG_{i,j,p} = \min \left[\sum_{i} HGS_{i,j,p}, \sum_{k} \widehat{HG}_{k,j,p} \right] , \text{ for any facility } j$$

$$\widehat{HG}_{k,j,p} = \begin{cases} \frac{HGC_k \times 24 \times DYS_p \times 2,257}{10^6} & \text{, for steam boiler} \\ \\ \frac{HGC_k \times 24 \times DYS_p \times 3.6}{10^3} & \text{, for hot water boiler} \end{cases}$$

Where

$HG_{i,j,p}$: Amount of heat consumption by the facility j which is generated by the
	CGS i during the period p [GJ/p]
$HGS_{i,j,p}$: Amount of heat supply to the facility j which is generated by the CGS i
	during the period p [GJ/p]
$\widehat{HG}_{k,j,p}$: Maximum capacity of heat generation by the existing boiler k
	supplying to the facility j during the period p [GJ/p]
HGC_k	: Heat generative capacity of the existing steam boiler $k [kg/h]$ or hot
	water boiler k [kW]
DYS_p	: Number of days during the period p [day/p]
i	: Identification number for the CGS
j	: Identification number for the facility to which electricity and heat
	generated by the CGS i is supplied
k	: Identification number for the existing boiler which supplies steam or
	hot water to the facility <i>j</i>

G. Calculation of project emissions

$$PE_{p} = \sum_{i} PE_{i,p}$$

$$= \sum_{i} (FC_{i,p} \times NCV_{i} \times 10^{-3} \times EF_{fuel,PJ,i})$$

Where

: Project emissions during the period p [tCO₂/p] $PE_{i,p}$: Project emissions for the CGS i during the period p [tCO₂/p] $FC_{i,p}$: Amount of gas fuel consumption by the CGS i during the period p [Nm³/p] NCV_i : Net calorific value of gas fuel consumption. : CO₂ emission factor for gas fuel consumed by the CGS i [tCO₂/GJ] $EF_{fuel,PJ,i}$

: Identification number for the CGS

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

Where	
ER_p	: Emission reductions during the period <i>p</i> [tCO ₂ /p]
RE_p	: Reference emissions during the period p [tCO ₂ /p]
PE_p	: Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
η_{RE}	Reference boiler efficiency.	Value derived from the result of
	Default value is set to 89.0 [%].	survey. The default value, 89.0
		[%], should be revised if
		necessary.
NCV_i	Net calorific value of gas fuel consumed by	In the order of preference:
	the CGS i [MJ/Nm ³].	a) value provided by fuel
		supplier;
		b) value measured by the
		project participants;
		c) regional or national default
		value; or
		d) IPCC default value
		provided in table 1.2 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Upper
		value is applied.
$EF_{elec,RE,j}$	CO ₂ emission factor for consumed electricity	[Grid electricity]
	in the facility j [tCO ₂ /MWh].	The data is sourced from
		"Emission Factors of
	When the facility consumes only grid	Electricity Interconnection
	electricity or captive electricity, the project	Systems", National Committee
	participant applies the CO ₂ emission factor	on Clean Development
	respectively.	Mechanism (Indonesian DNA
	When the facility consumes both grid	for CDM), based on data
	electricity and captive electricity, the project	obtained by Directorate
	participant applies the CO ₂ emission factor	General of Electricity, Ministry

	with lower value.	of Energy and Mineral
		Resources, Indonesia, unless
	[CO ₂ emission factor]	otherwise instructed by the
	For grid electricity: the most recent value	Joint Committee.
	available from the source stated in this table at	
	the time of validation.	[Captive electricity]
	For captive electricity: 0.8* [tCO ₂ /MWh]	CDM approved small scale
	*The most recent value available from CDM	methodology AMS-I.A.
	approved small scale methodology AMS-I.A	
	at the time of validation is applied.	
$EF_{fuel,RE,j}$	CO ₂ emission factor for fossil fuel consumed	In the order of preference:
	by the reference boiler in the facility j	a) value provided by fuel
	[tCO ₂ /GJ].	supplier;
	CO ₂ emission factor of natural gas is applied	b) value measured by the
	in this methodology in a conservative manner.	project participants;
		c) regional or national default
		value; or
		d) IPCC default value
		provided in table 1.4 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Lower
		value is applied.
$EF_{fuel,PJ,i}$	CO ₂ emission factor for gas fuel consumed by	In order of preference:
	the CGS i [tCO ₂ /GJ].	a) value provided by fuel
		supplier;
		b) value measured by the
		project participants;
		c) regional or national default
		value; or
		d) IPCC default value
		provided in table 1.4 of
		Ch.1 Vol.2 of 2006 IPCC
		Guidelines on National
		GHG Inventories. Higher
		value is applied.
HGC_k	Heat generative capacity of the existing steam	Catalogs, specifications

boiler k [kg/h] or hot water boiler k [kW]. The	prepared for the quotation or
value prepared by manufacturer is applied in	factory acceptance test data by
the use of Option 2 only.	manufacturer.
Equivalent evaporation is used for steam	
boilers, and rated thermal output for hot water	
boilers.	

History of the document

Version	Date	Contents revised
01.0	10 July 2018	JC8, Annex 5
		Initial approval.