JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia	
Name of the methodology proponents	Nippon Koei Co., Ltd.	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy Demand	
Methodology applies		
Title of the proposed methodology, and	Energy Saving by Introduction of High	
version number	Efficiency Once-through Boiler, ver.01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	⊠Additional information	
	Appendix 1. Additional Information for the	
	Proposed Methodology	
Date of completion	22/03/2018	

History of the proposed methodology

Version	Date	Contents revised
01.0	22/03/2018	First Edition

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Once-through Boiler, Version.01.0

B. Terms and definitions

Terms	Definitions	
Once-through boiler	A once-through boiler is a boiler without recirculation	
	where water flows through the economizer, furnace wall,	
	and evaporating and superheating tubes, sequentially.	
	Once-through boiler is used to supply heat in factory and	
	commercial facility.	
Periodical check	Periodical check is a scheduled examination of the project	
	boiler conducted by manufacturer or agent who is	
	authorized by the manufacturer in order to maintain	
	performance of the boiler.	
Boiler efficiency	Boiler efficiency is the percentage of heat quantity used to	
	generate steam against total heat quantity provided by a	
	fuel.	
Blow flow rate	Blow flow rate is the percentage of boiler blow volume	
	against feed water volume to prevent condensation of	
	water in the boiler. The rate will be reduced by introducing	
	water purification and demineralization system such as	
	Reverse Osmosis (RO)	
Fuel switching	Fuel switching involves the change of fuel from the one	
	with higher GHG emissions factor to lower GHG emission	
	factor (i.e. from coal to natural gas).	

C. Summary of the methodology

	Items Summary			
GHG	emission	reduction	This methodology involves the installation of high efficiency	
measur	res		once-through boiler. Compared with the fire tube boilers	
			which dominate Indonesian market, the efficiency of	

		once-through boiler is higher and fuel consumption is less. Thus	
		the introduction of once-through boiler will contribute to the	
		GHG emission reductions.	
Calculation of	reference	Reference emissions are calculated based on the efficiency of	
emissions		the boiler currently dominant in the Indonesian market.	
		Conservative estimation of reference emissions is made by	
		taking into consideration of the following points: (i) lower CO ₂	
		emission factor is selected from IPCC guideline with regard to	
		the fuel used in reference boiler, (ii) higher efficiency is applied	
		for the reference boiler especially in low load range.	
Calculation of	project	Project emissions are calculated on the basis of monitored fuel	
emissions		consumption and emission factor of the fuel of the project	
		boiler.	
Monitoring param	eters	- The amount of fuel consumption	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project boiler is a once-through boiler with a rated capacity of 7 ton/hour	
	per unit or less (equivalent evaporation)	
Criterion 2	Periodical check and maintenance by the manufacturer of boiler or authorized	
	agent is implemented in accordance with the manufacturer's requirement.	
Criterion 3	Appropriate water purification/demineralization system such as Reverse	
	Osmosis (RO) membrane treatment is installed.	

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Fuel consumption by reference boiler	CO_2	
Project emissions		
Emission sources	GHG types	
Fuel consumption by project boiler	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on the efficiency of the fire tube boilers which dominates the Indonesian boiler market for industries. The fuel types widely used in Indonesia are coal, followed by oil (heavy fuel oil and diesel). In order to ensure the net emission reductions, the higher efficiency of the reference boiler (89%) is adopted to calculate the reference emissions. In addition, 1) compared with reference boiler (oil and gas type), once-through boiler (project boiler) can maintain high efficiency even at low load range, which improves the operating efficiency of project boiler and 2) compared with reference boiler (coal), operational efficiency of the project boiler is higher due to better combustion control, which also ensures the net emission reductions. Besides, to calculate the reference emissions conservatively, lower emission factor stated in 2006 IPCC guidelines is adopted to secure the net emission reductions.

Introduction of water purification/demineralization system such as the RO also enables the reduction of blow flow of boiler water, which can save fuel consumption compared with the conventional water treatment system such as softener. The amount of fuel saving is inversely proportional to the boiler blow flow rate.

F.2. Calculation of reference emissions

$$\mathrm{RE}_{\mathrm{p}} = \sum_{i} \sum_{j} \left(\mathrm{FC}_{\mathrm{p},i,j,\mathrm{PJ}} \times \mathrm{NCV}_{i,j,\mathrm{PJ}} \right. \times \left. \mathrm{EF}_{\mathrm{RE}} \right. \times \left. \frac{\eta_{i,\mathrm{PJ}}}{\eta_{\mathrm{RE}}} \times \frac{100 - \mathrm{BF}_{i,\mathrm{PJ}}}{100 - \mathrm{BF}_{\mathrm{RE}}} \right)$$

RE_p: Reference emissions during the period p [tCO₂/p]

 $FC_{p,i,j,PI}$: The amount of fuel consumption of project boiler i for the fuel type j during the

period p [mass or volume unit/p]

 $NCV_{i,j,PI}$: Net calorific value of fuel used by project boiler i for the fuel type j [GJ/mass or

volume unit]

EF_{RE} : CO₂ emission factor of fuel used by reference boiler [tCO₂/GJ]

 $\eta_{i,PJ}$: Efficiency of project boiler i [dimensionless] η_{RE} : Efficiency of reference boiler [dimensionless] $BF_{i,PJ}$: Blow flow rate setting of project boiler i [%]

BF_{RE} : Blow flow rate setting of reference boiler [%]

G. Calculation of project emissions

$$PE_{p} = \sum_{i} \sum_{j} (FC_{p,i,j,PJ} \times NCV_{i,j,PJ} \times EF_{i,j,PJ})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $FC_{p,i,j,PJ}$: The amount of fuel consumption of project boiler i for the fuel type j during the

period p [mass or volume unit]

 $NCV_{i,i,PI}$: Net calorific value of fuel used by project boiler i for the fuel type j [GJ/mass or

volume unit]

 $EF_{i,j,PI}$: CO_2 emission factor of fuel used by project boiler i for the fuel type j [tCO₂/GJ]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
$NCV_{i,j,PJ}$	Net calorific value of fuel used by	(1) Net calorific value (lower heating
	project boiler i for the fuel type j	value) provided by fuel supplier or
	[GJ/mass or volume unit]	boiler manufacturer, (2) IPCC default
		values at the lower limit in Table 1.2 of
		Chapter 1 of Vol. 2 of the "2006 IPCC
		Guidelines for National GHG
		Inventories" (when (1) is not available,
		apply (2))
$EF_{i,j,PJ}$	CO ₂ emission factor of fuel used by	IPCC default value at the lower limit in
	the project boiler i for the fuel type j	Table 1.4 of Chapter 1 of Vol. 2 from
	[tCO ₂ /GJ]	"2006 IPCC Guidelines for National

		Greenhouse Gas Inventories"
EF _{RE}	CO ₂ emission factor of fuel used by	IPCC default value at the lower limit in
	the reference boiler [tCO ₂ /GJ]	Table 1.4 of Chapter 1 of Vol. 2 from
	In case the project boiler replaces	"2006 IPCC Guidelines for National
	the existing boiler or the planned	Greenhouse Gas Inventories"
	boiler whose plan is once approved	
	officially such as with boiler	
	installation permit or environmental	
	impact assessment, the fuel of the	
	existing or planned boiler is	
	applied.	
	Otherwise, the value is the same	
	with EF _{i,j,PJ} .	
$\eta_{i,PJ}$	Efficiency of project boiler i	Specifications of the project boiler or
	[dimensionless]	factory test data of the project boiler by
		the manufacturer
η_{RE}	Efficiency of reference boiler	Default value in the methodology
	[dimensionless]	
	The default value of η_{RE} is set as	
	0.89.	
$BF_{i,PJ}$	Blow flow rate setting of the project	Blow flow rate setting specified in the
	boiler i [%]	boiler water treatment program for a
		water purification/demineralization
		system such as RO based on the test
		result
BF_{RE}	Blow flow rate setting of reference	Blow flow rate specified in the boiler
	boiler [%]	water treatment program for a water
		softener based on the test result