Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia				
Name of the methodology proponents	Nippon Koei Co., Ltd.				
submitting this form					
Sectoral scope(s) to which the Proposed	3. Energy demand				
Methodology applies					
Title of the proposed methodology, and	Energy Saving by Introduction of High				
version number	Efficiency Centrifugal Chiller				
List of documents to be attached to this form	The attached draft JCM-PDD:				
(please check):	Additional information				
Date of completion	29/04/2014				

History of the proposed methodology

Version	Date	Contents revised
1.0	30/04/2014	First edition

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Centrifugal Chiller

B. Terms and definitions

Terms	Definitions				
Centrifugal chiller	A centrifugal chiller is a chiller applying a centrifugal compressor.				
	It is commonly used for air-conditioning with huge cooling load,				
	e.g., buildings, shopping malls or factories etc.				
Cooling capacity	Cooling capacity is the ability of individual chiller to remove heat.				
	In this methodology, "cooling capacity" is used to represent a				
	cooling capacity per one chiller unit and not for a system with				
	multiple chiller units.				
Periodical check	Periodical check is a periodical investigation of chiller done by				
	manufacturer or agent who is authorized by the manufacturer, in				
	order to maintain chiller performance.				

C. Summary of the methodology

Items	Summary		
GHG emission reduction	This methodology applies to the project that aims for saving		
measures	energy by introducing high efficiency centrifugal chiller for the		
	target factory, commerce facilities etc. in Indonesia.		
Calculation of reference	Reference emissions are GHG emissions from using reference		
emissions	chiller, calculated with power consumption of project chiller,		
	ratio of COPs (Coefficient Of Performance) of reference/project		
	chillers and grid emission factor.		
Calculation of project	Project emissions are GHG emissions from using project chiller,		
emissions	calculated with power consumption of project chiller and grid		
	emission factor.		
Monitoring parameter	Power consumption of project chiller		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Project chiller is a centrifugal chiller with a capacity of less than 1,250 USRt.					
	* 1 USRt = 3.52 kW					
Criterion 2	COP for project chiller is more than 6.0 in specifications of project chiller					
	prepared for the quotation or factory acceptance test data at the time of shipment					
	by manufacturer.					
	In this methodology, the following temperature conditions are applied in order to					
	calculate COP:					
	Note : Temperature conditions to calculate COP.					
	Chilled water: output 7 degree Celsius					
	input 12 degree Celsius					
	Cooling water: output 37 degree Celsius					
	input 32 degree Celsius					
Criterion 3	Periodical check is planned more than four (4) times annually.					
Criterion 4	Ozone Depletion Potential (ODP) of the refrigerant used for project chiller is					
	zero.					
Criterion 5	Plan for not releasing refrigerant used for project chiller is prepared. In the case					
	of replacing the existing chiller with the project chiller, refrigerant used for the					
	existing chiller is not released to the air.					

E. Emission Sources and GHG types

Reference emissions				
Emission sources	GHG types			
Power consumption by reference chiller	CO ₂			
Project emissions				
Emission sources	GHG types			
Power consumption by project chiller	CO ₂			

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and grid emission factor.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions:

1. The COP value tends to increase as the cooling capacity becomes larger.

2. The reference COP, which has a certain cooling capacity, is set at a maximum value in corresponding cooling capacity range.

3. The maximum values of COP in each cooling capacity ranges are defined as $\text{COP}_{\text{RE}_default}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} (EC_{PJ,i,p} \times COP_{PJ,i} \div COP_{RE,i} \times EF_{grid})$$

 RE_p : Reference emissions during the period *p* [tCO₂/p]

EC_{PI,i,p}: Power consumption of project chiller i during the period *p* [MWh/p]

 COP_{PLi} : COP of project chiller i [-]

 $COP_{RE,i}$: COP of reference chiller i [-]

$$EF_{grid}$$
: CO₂ emission factor for an Indonesian regional grid system, from which
electricity is displaced due to the project during a given time period [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_i \bigl(EC_{PJ,i,p} \times EF_{grid} \bigr)$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PJ,i,p}$: Power consumption of project chiller i during the period *p* [MWh/p]

EF_{grid} : CO₂ emission factor for an Indonesian regional grid system, from which

electricity is displaced due to the project during a given time period $[tCO_2/MWh]$

H. Calculation of emissions reductions

	$\mathbf{ER}_{\mathbf{p}} = \mathbf{RE}_{\mathbf{p}} - \mathbf{PE}_{\mathbf{p}}$
ERp	: Emission reductions during the period p [tCO ₂ /p]
REp	: Reference emissions during the period p [tCO ₂ /p]
PEp	: Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
EF _{grid}	CO ₂ emission factor for an Indonesian regional grid	The most recent value
	system, from which electricity is displaced due to	available at the time of
	the project during a given time period	validation is applied
		and fixed for the
		monitoring period
		thereafter. The data is
		sourced from
		"Emission Factors of
		Electricity
		Interconnection
		Systems", National
		Committee on Clean
		Development

Parameter	Description of data					Source	
					Mechanism Indonesian		
							DNA for CDM unless
							otherwise instructed
							by the Joint
							Committee.
COP _{RE,i}	The COP val	ue of th	e refere	nce chil	ler i is c	alculated	l Specifications of
	from the fol	lowing	equation	on, appl	ying th	e defaul	t project chiller i
	COP value	(COI	RE_defaul	t) sele	cted fi	rom the	e prepared for the
	following tal	ole in a	ccordan	ce with	cooling	capacity	quotation or factory
	of the proje	ect chil	ler i a	nd the	temper	atures of	f acceptance test data by
	cooling and o	chilled v	water of	the pro	ject con	dition:	manufacturer in line
							with the project
	$COP_{RE,i} = CO$)P _{RE_de}	_{fault} × 3	33.0 ÷ (T _{cooling}	-out -	conditions
	T _{chilled-out} +	- 3.0)					
	COP _{RE_default} :			chiller un ure condi		ollowing	
	$T_{cooling-out}$: Co	oling wa	ter tempe	rature, ou	tput		
	T _{chilled-out} : Ch Chilled wate		er temper utput	ature, out _l 7 degree			
	Cooling wat		-	12 degre	e Celsius		
	Cooling water: output 37 degree Celsius input 32 degree Celsius						
			COP _{re} _	default			
	Cooling						
	capacity $x<300$ $300 \le$ $450 \le$ $500 \le$ $700 \le$ /unit $x<450$ $x<500$ $x<700$ $x<1,250$						
	(USRt)						
	$\operatorname{COP}_{\operatorname{RE_default}}$	4.92	5.33	5.59	5.85	5.94	
COP _{PJ,i}	The COP val	ue of p	roject c	hiller i	is calcu	lated and	l Specifications of
	set under the project temperature condition.				project chiller i		
					prepared for the		
					quotation or factory		
							acceptance test data by
					manufacturer in line		
					with the project		
							conditions