Joint Crediting Mechanism Approved Methodology ID_AM014 "Installation of Tribrid Systems to mobile communication's Base Transceiver Stations"

A. Title of the methodology

Installation of Tribrid Systems to mobile communication's Base Transceiver Stations Ver 01.0

B. Terms and definitions

Terms	Definitions
Base Transceiver Station (BTS)	A facility equipped with antenna and other communication
	equipment for sending and receiving radio signals to mobile
	devices and converting them to digital signals. A typical BTS
	in Indonesia comprises of a transceiver, rectifier, diesel
	generator, and a lead-acid battery as a standby power supply
	to prevent momentary and/or temporary power failure.
Tribrid System	Tribrid System is a combined system of solar PV, batteries,
	and electric power control system. Tribrid System controls
	charge-discharge of battery, and improves the operational
	efficiency of diesel generators with its electric power control
	system. As a result, it reduces consumption of grid electricity
	and/or captive electricity.

C. Summary of the methodology

	Items		Summary
GHG d	emission	reduction	By installation of Tribrid system(s) to mobile communication's
measures	5		Base Transceiver Stations, the project achieves energy saving
			through displacement of grid and/or captive electricity by solar
			power, and optimization of the efficiency of diesel generator
			reducing its total operation time.
Calculat	ion of	reference	Reference emissions are calculated on the basis of monitored
emission	S		electricity consumption at the project BTS. The reference grid
			electricity and/or diesel consumption are calculated based on

	hours for which electricity is available from grid, and efficiency	
	of diesel generator. Then, emissions from grid electricity and/or	
	diesel consumption are calculated multiplying by CO ₂ emission	
	factor of grid electricity and/or diesel.	
Calculation of project	Project emissions are calculated on the basis of monitored grid	
emissions	electricity consumption and/or diesel consumption at the project	
	BTS after implementation of the project, and CO ₂ emission	
	factor of grid electricity and/or diesel.	
Monitoring parameters	-The amount of grid electricity consumed at BTSi	
	-The quantity of diesel consumed at BTSi	
	-The amount of electricity generated by the project diesel	
	generator at <i>BTSi</i>	
	-The amount of electricity generated by the project solar PV	
	systems at <i>BTSi</i>	
	-Hours for which electricity is available from grid at BTSi	
	-Hours of operation of BTSi	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

The project installs Tribrid system(s) to new and/or existing BTS.
The project BTS is located at the telecom tower sites equipped with diesel
generator.
The PV modules have obtained a certification of design qualifications (IEC
61215, IEC 61646, or IEC62108), and safety qualification (IEC 61730-1, and
IEC 61730-2) at the time of validation based on the latest version of
international or national standard.
The battery installed by the project is Li-ion battery.
In the case of replacing existing Lead-Acid battery with the project Li-ion
battery, lead contained in existing Lead-Acid battery is not released to the
environment.

E. Emission Sources and GHG types

Reference emissions

Emission sources	GHG types	
Emissions from grid electricity and/or captive electricity	CO_2	
Project emissions		
Emission sources GHG types		
Emissions from grid electricity and/or captive electricity	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated on the basis of monitored electricity consumption at the project BTS. The reference grid electricity and/or diesel consumption that are calculated based on hours for which electricity is available from grid, and efficiency of diesel generator. Then, emissions from grid electricity and/or diesel consumption are calculated multiplying by CO₂ emission factor of grid electricity and/or diesel.

Reference emissions are calculated using design efficiency of new diesel generator to be installed at the project BTS when it's installed to the project BTS. If new diesel generator is not installed by the project, the design value of efficiency of the diesel generator operated at the project BTS at the time of validation is applied for the calculation of reference emissions. If more than one diesel generators are equipped at the project BTS, the most efficient value among the design efficiency of the equipped diesel generators is adopted for the calculation of the reference emissions.

Ensuring net emission reductions

Net emission reductions are ensured by adopting a design efficiency of the project diesel generator. If a new diesel generator replaces the existing one, the design efficiency of the new diesel generator is applied. It is also ensured by calculating fuel consumption by diesel generator based on the assumption that diesel generator operates steadily with design efficiency in reference scenario although actual fuel consumption is used for the project scenario.

F.2. Calculation of reference emissions

$$RE_p = \sum_i \left(EC_{i,p} \times \frac{\tau_{i,p}}{T_{i,p}} \times EF_{grid} + \varphi_i \times \left(T_{i,p} - \tau_{i,p} \right) \times \rho_{diesel} \times 10^{-6} \times NCV_{diesel} \times EF_{diesel} \times 10^{-3} \right)$$
 and

$$EC_{i,p} = EC_{i,grid,p} + EC_{i,diesel,p} + EC_{i,solar,p}$$

Where

Reference emissions during the period p (tCO₂/p) RE_{n}

 $EC_{i,p}$ Total electricity consumption at *BTSi* during the period p (MWh/p)

The amount of grid electricity consumed at BTSi during the period p(MWh/p)

The amount of electricity generated by the project diesel generator at BTSi $EC_{i,diesel,p}$ during the period *p* (MWh/p)

The amount of electricity generated by the project solar PV system at BTSi

 $EC_{i,solar,p}$ during the period *p* (MWh/p)

Hours for which electricity is available from grid at BTSi during the period

p(h/p)

 $T_{i,p}$ = Total hours of operation of BTSi during the period p (h/p)

Grid CO₂ emission factor (tCO₂/MWh) EF_{grid}

Design efficiency of diesel generator operated at the project BTS at the φ_i

time of validation at 25% load to be installed at BTSi (L/h)

Weighted average density of diesel (kg/L) ρ_{diesel}

 NCV_{diesel} Net calorific value of diesel (TJ/Gg)

= Diesel CO₂ emission factor (kgCO₂/TJ) EF_{diesel}

G. Calculation of project emissions

$$PE_p = \sum_{\cdot} \left(EC_{\mathrm{i,grid},p} \times EF_{grid} + FC_{i,diesel,p} \times \rho_{diesel} \times 10^{-6} \times NCV_{diesel} \times EF_{diesel} \times 10^{-3} \right)$$

Where

 PE_{p} = Project emissions during the period p (tCO₂/p)

The amount of grid electricity consumed at BTSi during the period p

(MWh/p)

= Grid CO₂ emission factor (tCO₂/MWh)

 $FC_{i,diesel,p}$ = The quantity of diesel consumed at BTSi during the period p (L/p)

 ρ_{diesel} = Weighted average density of diesel (kg/L)

Net calorific value of diesel (TJ/Gg)

= Diesel CO₂ emission factor (kgCO₂/TJ) EF_{diesel}

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

Where

 ER_p = Emission reductions during the period p (tCO₂/p)

 RE_p = Reference emissions during the period p (tCO₂/p)

 PE_p = Project emissions during the period p (tCO₂/p)

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
	Design efficiency of diesel generator	Specification of generator.
φ_t	operated at the project BTS at the time of	Manufacturer's data.
	validation at 25% load to be installed at	If more than one diesel
	BTSi (L/h)	generators are equipped at the
	If new diesel generator is not installed by	project BTS, the most efficient
	the project, the design value of the diesel	value among the design
	generator operated at BTS at the time of	efficiency of the equipped
	validation is applied for the calculation of	diesel generators is adopted
	reference emissions. The design efficiency	for the calculation of the
	of the diesel generator at 25% value is	reference emissions.
	applied.	
	As a load factor of diesel generator at BTS	
	site, 25% load which is set for mini-grid	
	with 24 hour services in CDM approved	
	small scale methodology AMS-I.F. is	
	adopted. According to the AMS-I.F.,	
	mini-grid is defined as small-scale power	
	system with a total capacity not exceeding	
	15MW. For diesel generator operation at	
	BTS connected to unreliable grid with	
	available electricity less than 24 hours,	
	adopting efficiency of diesel generator (L/h)	

	at 25% load to ensure conservativeness.	
EF_{grid}	Grid CO ₂ emission factor (tCO ₂ /MWh)	The most recent value
		available at the time of
		validation is applied and fixed
		for the monitoring period
		thereafter. The data is sourced
		from "Emission Factors of
		Electricity Interconnection
		Systems", National
		Committee on Clean
		Development Mechanism
		Indonesian DNA for CDM
		unless otherwise instructed by
		the Joint Committee.
ρ_{diesel}	Weighted average density of diesel (kg/L)	a) Values provided by the fuel
		supplier in invoices, or
		b) Regional or national default
		value.
NCV_{diesel}	Net calorific value of diesel (TJ/Gg)	IPCC default values provided
		in table 1.2 of Ch.1 Vol.2 of
		2006 IPCC Guidelines on
		National GHG Inventories.
		Lower value is applied.
EF_{diesel}	Diesel CO ₂ emission factor (kgCO ₂ /TJ)	IPCC default values provided
		in table 1.4 of Ch.1 Vol.2 of
		2006 IPCC Guidelines on
		National GHG Inventories.
		Lower value is applied.

History of the document

Version	Date	Contents revised
01.0	04 December 2017	JC7, Annex 4 Initial approval.