JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	Indonesia	
Name of the methodology proponents	Institute for Global Environmental Strategies	
submitting this form		
Sectoral scope(s) to which the Proposed Methodology applies	1. Energy industries (renewable-/non-renewable sources)	
Title of the proposed methodology, and version number	Installation of Solar PV System, Ver. 01.0	
List of documents to be attached to this form	The attached draft JCM-PDD:	
(please check):	Additional information	
Date of completion	15/02/2017	

History of the proposed methodology

Version	Date	Contents revised		
01.0	15/02/2017	First edition		

A. Title of the methodology

Installation of Solar PV System, Ver. 01.0

B. Terms and definitions

Terms	Definitions	
Solar photovoltaic (PV) system	An electricity generation system which converts sunlight	
	into electricity by the use of photovoltaic (PV) modules.	
	The system also includes ancillary equipment such as	
	inverters required to change the electrical current from	
	direct current (DC) to alternating current (AC).	

C. Summary of the methodology

Items	Summary		
GHG emission reduction	Displacement of grid electricity and/or captive electricity by		
measures	installation and operation of solar PV system(s).		
Calculation of reference	Reference emissions are calculated on the basis of the AC		
emissions	output of the solar PV system(s) multiplied by either; 1)		
	conservative emission factor of the grid, or 2) conservative		
	emission factor of the captive diesel power generator.		
Calculation of project	Project emissions are the emissions from the solar PV system(s),		
emissions	which are assumed to be zero.		
Monitoring parameters The quantity of the electricity generated by the project sol			
	system(s).		

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project newly installs solar PV system(s).		
Criterion 2	The PV modules are certified for design qualifications (IEC 61215, IEC 61646		
	or IEC 62108) and safety qualification (IEC 61730-1 and IEC 61730-2).		
Criterion 3	The equipment to monitor output power of the solar PV system(s) and		

infudiance is instance at the project site.		irradiance	is	installed	at the	project	site.
---	--	------------	----	-----------	--------	---------	-------

E. Emission Sources and GHG types

Reference emissions			
Emission sources	GHG types		
Consumption of grid electricity and/or captive electricity	CO_2		
Project emissions			
Emission sources	GHG types		
Generation of electricity from the solar PV system(s)	N/A		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The default emission factor is set in a conservative manner for the Indonesian regional grids. The emission factor is calculated based on the conservative operating margin that reflects on the latest electricity mix including low cost/must run resources for each regional grid in Indonesia during 2012-2014 and refers to the conservative emission factor of each fossil fuel power plant in order to secure net emission reductions. The conservative emission factor of each plant is calculated to be 0.795 t-CO₂/MWh for coal-fired power plant and 0.320 t-CO₂/MWh for gas-fired power plant based on the survey on heat efficiency of power plant in Indonesia. The emission factor for diesel power plant is calculated to be 0.533 t-CO₂/MWh based on a default heat efficiency of 49%, an efficiency level which is above the value of the world's leading diesel power generators.

In case the PV system(s) in a proposed project activity is directly connected or connected via an internal grid, not connecting to a captive power generator, to a regional grid (PV Case 1), the value of operating margin including LCMR resources, using the best heat efficiency among currently operational plants in Indonesia in calculating emission factors of fossil fuel power plants, are applied.

In the case the PV system(s) in a proposed project activity is connected to an internal grid connecting to both a regional grid and a captive power generator (PV Case 2), the lower values between emission factors as shown in column "Emission factor for PV Case 1 (t- CO_2/MWh)" of Table 1 of the additional information and the conservative emission factors of diesel-fired

power plant of 0.533 t-CO₂/MWh is applied. The emission factors to be applied are shown in column "Emission factor for PV Case 2 (t-CO₂/MWh)" of Table 1 of the additional information.

In the case that the PV system(s) in a proposed project activity is only connected to an internal grid connecting to a captive power generator (PV Case 3), the emission factor of a diesel generator calculated by applying the most efficient heat efficiency of 49%, an efficiency level which has not been achieved yet by the world's leading diesel generator is applied, which is set to $0.533 \text{ tCO}_2/\text{MWh}$.

The result of emission factors for each case is shown in Section I.

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{i} (EG_{i,p} \times EF_{RE,i})$$

- RE_p : Reference emissions during the period p [tCO₂/p]
- $EG_{i,p}$: Quantity of the electricity generated by the project solar PV system *i* during the period *p* [MWh/p]
- $EF_{RE,i}$: Reference CO₂ emission factor for the project solar PV system *i* [tCO₂/MWh]

G. Calculation of project emissions

 $PE_p = 0$

 PE_p : Project emissions during the period p [tCO₂/p]

H. Calculation of emissions reductions

 $ER_{p} = RE_{p} - PE_{p}$ $= RE_{p}$ $ER_{p} : Emission reductions during the period$ *p*[tCO₂/p] $RE_{p} : Reference emissions during the period$ *p*[tCO₂/p] $PE_{p} : Project emissions during the period$ *p*[tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source	
EF _{RE, i}	Reference CO ₂ emission factor for the project solar		Additional information
	PV system <i>i</i> .		The default emission
	5		factor value is obtained
	The value for $EF_{RE,i}$ is selected from	om the emission	from a study of electricity
	factor based on the regional grid (EF	F _{RE,grid}) or based	monta study of electricity
	on captive diesel power generator ((EF _{RE,cap}) in the	systems in Indonesia and
	following manner:		the most efficient diesel
			power generator (49%
	In case the PV system(s) in a pr	roposed project	heat efficiency). The
	activity, which is directly connecte	ed or connected	default value is revised if
	via an internal grid not connectin	ng to a captive	deemed necessary by the
	nower generator (PV Case 1) to a	a regional grid	IC
	EE is set as following:	a regional gria,	JC.
	EF _{RE,grid} Is set as following:		
	Jamali arid) 500 tCO /MWh	
	Sumatra grid 0	$0.390 \text{ tCO}_2/\text{MWh}$	
	Batam grid 0	$0.627 \text{ tCO}_2/\text{MWh}$	
	Khatulistiwa, Barito grids 0	0.600 tCO ₂ /MWh	
	Mahakam grid 0	0.522 tCO ₂ /MWh	
	Sulawesi Island grids 0).353 tCO ₂ /MWh	
	Lombok, Bima, Sumbawa grids 0	$0.551 \text{ tCO}_2/\text{MWh}$	
	Kupang. Ende, Maumere, 0 Waingapu grids	$0.515 \text{ tCO}_2/\text{MW}\text{ n}$	
	Ambon, Tual, Masohi grids 0).533 tCO ₂ /MWh	
	Ternate grid 0	$0.532 \text{ tCO}_2/\text{MWh}$	
	In case the PV system(s) in a pr		
	activity, which is connected to a	n internal grid	
	connecting to both a regional grid		
	power generator (PV Case 2), EF		
	following:		
	Jamali grid 0).533 tCO ₂ /MWh	
	Sumatra grid 0	$0.483 \text{ tCO}_2/\text{MWh}$	
	Batam grid 0	0.533 tCO ₂ /MWh	
	Khatulistiwa, Barito grids 0).533 tCO ₂ /MWh	
	Mahakam grid 0	0.522 tCO ₂ /MWh	
	Sulawesi Island grids 0	$0.353 \text{ tCO}_2/\text{MWh}$	
	Lombok, Bima, Sumbawa grids	$0.535 \text{ tCO}_2/\text{MWh}$	
	Wainganu grids	$0.515 \text{ tc} \text{O}_2/1\text{VI VV II}$	
	Ambon, Tual, Masohi grids 0).533 tCO ₂ /MWh	

Ternate grid	0.532 tCO ₂ /MWh	
In case the PV system(s) in a	proposed project	
activity is connected to an internal	grid which is not	
connected to the regional grid (PV	Case 3), EF _{RE,cap} ,	
0.533 tCO ₂ /MWh is applied.		