

Additional Information: Power generation by waste heat recovery in cement industry

Project Overview

A WHR system recovers waste heat energy, generates steam which is fed into a steam turbine to generate power.

Typical System Flow

Clinker Production Process

Waste Heat Recovery System

WHR Systems in Indonesia

Background

- ✓ Only 1 WHR system installed to 1 plant out of existing 25 plants in Indonesia
- √ The installation of the WHR system mentioned above was undertaken as a CDM project (registered on 11 July 2011)
- √ The starting date of this project is 19 March and no plant has been installed ever since

Barriers

- ✓ WHR systems are not production facilities
- ✓ With moderate economic growth and projection for increased cement demand in the future, investment in ancillary facilities such as WHR systems is not the top priority of private companies
 - → As a result, WHR systems have had a limited diffusion rate

Reference Emissions

Calculation

- ✓ Reference emissions are calculated conservatively through the following method:
 - Net electricity generation is calculated from "Power supplied" – "Power consumed"
 - Power consumption ($EC_{AUX,p}$) is calculated from the theoretically maximum load to the equipment consuming electricity (EC_{CAP})

Corresponds to net emission reductions

Reference Emissions

Calculation

- ✓ Net electricity generated by the WHR system (EG_p) which
 replaces grid electricity import is calculated by the following:
 - EG_p = Electricity supplied by WHR (A) Electricity consumed by WHR (C)
 - Amount of electricity consumption at (B) is already deducted from amount of electricity supplied at (A)

