JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Torm for submitting the proposed methodology			
Host Country	Indonesia		
Name of the methodology proponents	Nomura Research Institute, Ltd.		
submitting this form			
Sectoral scope(s) to which the Proposed	3. Energy demand		
Methodology applies	4. Manufacturing industries		
Title of the proposed methodology, and	Reduction of Energy Consumption by		
version number	Introducing an Energy-Efficient Old Corrugated		
	Carton Processing System into a Cardboard		
	Factory (version 1.0)		
List of documents to be attached to this form	The attached draft JCM-PDD:		
(please check):	Additional information		
Date of completion	30/3/2016		

History of the proposed methodology

Version	Date	Contents revised
Ver. 1.0	30/3/2016	First edition

A. Title of the methodology

Reduction of Energy Consumption by Introducing an Energy-Efficient Old Corrugated Carton Processing System into a Cardboard Factory (version 1.0)

B. Terms and definitions

Terms	Definitions	
Old Corrugated Carton Line	A process for adjusting materials to be delivered to the	
(OCC line)	following paper making line (PM line) in the corrugated	
	carton production process. The energy used by the OCC line	
	is electricity.	
	It mainly consists of a pulper which melts old corrugated	
	carton and a screen which refines the corrugated medium,	
	and also motor, pump, agitator, thickener, and cleaner.	
Paper Machine Line	A process for making paper in a corrugated carton production	
(PM line)	process.	
Paper Yield	Percentage of paper production output in the recycled paper	
	input to the OCC line.	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	This methodology targets introduction of energy saving	
measures	technologies, i.e. energy-efficient old corrugated carton	
	processing system, to OCC lines in a cardboard factory.	
	Mechanical efficiency of each element device is improved and	
	system configuration and control are optimized in the	
	energy-efficient old corrugated carton processing system, which	
	leads to a reduction of the electricity consumptions, and	
	consequently GHG emission reductions.	
Calculation of reference	Reference emissions are calculated from the energy intensity	
emissions	(specific energy consumption) of the reference OCC line(s), the	
	project paper production and the emission factor for consumed	
	electricity.	

Calculation of project	Project emissions are calculated from the electricity	
emissions	consumption by the project OCC line and the emission factor	
	for consumed electricity.	
Monitoring parameters	• Paper production measured at the PM line connected to the	
	project OCC line	
	Electricity consumption of the project OCC line	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The specific energy consumption of the project OCC line guaranteed by the
	manufacture is less than the reference specific energy consumption set for the
	project factory.
Criterion 2	The paper yield of the project OCC line(s) guaranteed by the manufacture is
	equal to or more than 90%.
Criterion 3	Production capacity of the project OCC line is no more than the twice as large as
	the capacity of the existing OCC line
Criterion 4	Plan for regular adjustment, replacement, and improvements of project OCC
	line(s) are prepared (at least once every six months).

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Electricity consumption by the reference OCC line(s) CO ₂		
Project emissions		
Emission sources GHG types		
Electricity consumption by the project OCC line(s)	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

In this methodology, the reference emissions are calculated based on the best past performance

of the existing OCC lines of the same factory where the project OCC line(s) is installed.

Net emission reductions are achieved by fixing the default value of specific electricity consumption (i.e. amount of electricity consumed by the OCC line to produce one unit of paper product measured at the PM line) of the reference OCC line conservatively in the following manner:

• Collect at least 300 data sets of daily electricity consumption by the OCC line* and daily volume of paper product at the PM line connected to the OCC line and calculate the specific electricity consumption (SEC) of the OCC line for each daily data by dividing electricity consumption by volume of paper product

*Electricity consumption by the OCC line can be measured with a measuring equipment or can be estimated from measured electricity consumption of the whole corrugated carton production process consisting of the OCC line and the PM line.

- Calculate reference specific energy consumption (SEC_{RE}) by averaging the values of SEC with omitting those which fall outside the range of mean value plus 2 times of the standard deviation
- Where multiple OCC lines exist in the factory, select the most recently installed OCC line(s) for data collection
- If the existing OCC line has been installed as a JCM project, data of such OCC line is excluded from calculation of the default value

F.2. Calculation of reference emissions

$$RE_{p} = \sum_{j} (EC_{RE,j,p} \times EF_{elec})$$
$$EC_{RE,j,p} = SEC_{RE} \times PP_{j,p}$$

Where

RE_p	:	Reference emissions during the period p [tCO ₂ /p]
$EC_{RE,j,p}$:	Electricity consumption by the reference OCC line j during the period p
		[MWh/p]
EF_{elec}	:	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]
SEC_{RE}	:	Reference specific electricity consumption of the OCC line [MWh/ton]
$PP_{j,p}$:	Paper production measured at the PM line connected to the project OCC
		line <i>j</i> during the period p [ton/p]
j	:	Identification number of the OCC line

G. Calculation of project emissions

$$PE_p = \sum_{j} (EC_{PJ,j,p} \times EF_{elec})$$

Where

Where

PE_p	:	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,j,p}$:	Electricity consumption by the project OCC line j during the period p
		[MWh/p]
EF _{elec}	:	CO2 emission factor for consumed electricity [tCO2/MWh]
j	:	Identification number of the OCC line

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

: Emission reductions during the period *p* [tCO₂/p]

ER_p	: Emission reductions during the period p [tCO ₂ /p]
RE_p	: Reference emissions during the period p [tCO ₂ /p]
PE_p	: Project emissions during the period $p [tCO_2/p]$

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Par	ameter	Description of data	Source
S	EC_{RE}	Reference specific electricity	Data of daily electricity consumption by

	consumption of the OCC line	the OCC line and daily volume of paper
	[MWh/ton]	product at the PM line connected to the
		OCC line for at least one year monitored
	The value for each project is fixed ex	at the same factory where the project
	ante by the project participant in line	OCC line is installed.
	with the procedures described in the	
	section F.1 in this methodology.	
EF _{elec}	CO_2 emission factor for consumed	[Grid electricity]
	electricity [tCO ₂ /MWh].	The data is sourced from "Emission
		Factors of Electricity Interconnection
	When the project equipment consumes	Systems", National Committee on Clean
	only grid electricity or captive	Development Mechanism (Indonesian
	electricity, the project participant applies	DNA for CDM), based on data obtained
	the CO ₂ emission factor respectively.	by Directorate General of Electricity,
	When the project equipment may	Ministry of Energy and Mineral
	consume both grid electricity and	Resources, Indonesia, unless otherwise
	captive electricity, the project	instructed by the Joint Committee.
	participant applies the CO ₂ emission	
	factor with lower value.	[Captive electricity from other than
		co-generation system]
	[CO ₂ emission factor]	CDM approved small scale
	For grid electricity: The most recent	methodology AMS-I.A
	value available from the source stated in	Contine electricity from as conception
	this table at the time of validation	[Captive electricity from co-generation
	For captive electricity from other than	system]
	co-generation system: 0.8**	Specification of the co-generation system provided by the manufacturer
	[tCO ₂ /MWh]	
	**The most recent value available from	$(\eta_{elec} [\%]).$ Generated and supplied electricity by
	CDM approved small scale	the co-generation system (EG _{PJ,p})
	methodology AMS-I.A at the time of	[MWh/p]).
	validation is applied.	Fuel amount consumed to generate heat
		and electricity by the co-generation
	When the captive electricity source is	system (FC _{PJ,p} [mass or weight/p]).
	co-generation system, the emission	Net calorific value and (NCV_{fuel})
	factor is calculated from its power	[GJ/mass or weight]) CO_2 emission
	generation efficiency (η_{elec} [%])	factor of the fuel (EF_{fuel} [tCO ₂ /GJ]) in
	generation enterency (Ilelec [70])	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$

obtained from the following ways:	order of preference:
a) From manufacturer's specification	1) values provided by the fuel supplier;
The power generation efficiency based	2) measurement by the project
on lower heating value (LHV) of the	participants;
co-generation system from the	3) regional or national default values;
manufacturer's specification is applied;	4) IPCC default values provided in table
	1.4 of Ch.1 Vol.2 of 2006 IPCC
$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	Guidelines on National GHG
b) From calculation with measured data	Inventories. Lower value is applied.
The power generation efficiency	
calculated from monitored data of the	
amount of fuel input for power	
generation $(FC_{PJ,p})$ and the amount of	
electricity generated $(EG_{PJ,p})$ during the	
monitoring period p is applied. The	
measurement is conducted with the	
monitoring equipment to which	
calibration certificate is issued by an	
entity accredited under	
national/international standards;	
$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel}$	
$ imes rac{1}{EG_{PJ,p}}$	
Where:	
NCV_{fuel} : Net calorific value of	
consumed fuel [GJ/mass or weight]	